Cactus Chemistry
By Species
2014
Light

Assembled by
Keeper Trout
& friends
Acquiring & processing the references needed for a comprehensive treatment has postponed the planned release date so dramatically that I have decided to make this version available while the final book takes shape. Due to the ongoing nature of research and this subject that book could be a never ending project to complete so the final book will be a compromise formed by time, life & literature access.

The intensely illustrated version that was the source for this same work can be found at:

For contact information, new uploads and updated versions visit:
http://www.largelyaccurateinformationmedia.com/

MydriaticProductions

This series of works are intended to serve the reader with reference material for further research and study.

Trout’s Notes therefore strongly encourages the dissemination of any and all factual information contained within these pages so long as proper acknowledgment of authorships are maintained. This is not permission to reproduce this work but it is an encouragement to educate. No one owns facts or factual data.
“It is pertinent to mention that all of the Trichocereus species, which have been reported to contain alkaloids, grow in a rather limited geographical area confined to Argentina.”

Djerassi et al. 1956 JACS 78: 2312-2315.
Distribution of Alkaloids, Triterpenoids & other Compounds Reported in the Cactaceae

Assembled & edited by Keeper Trout

It is important to understand that all alkaloid concentrations can be highly variable. This can be the result of many factors. Genetics, environment, age, part sampled, weather, health, time of year or time of day, and whether the plants were wild or cultivated, have all been noted as factors potentially capable of influencing the alkaloid content and/or composition in plants.

Substantial variations can be encountered based on the variety, local form, age, growth stage and other factors.

An obvious but frequently overlooked fact is that analysis of a cactus can really only tell us about the actual material in hand undergoing analysis and can serve as no more than a probable guideline for what MIGHT be the case with another specimen within the same species.

Differences might simply be quantitative but are frequently found to be qualitative as well should enough samplings be performed.

The trend in the literature is a look at one sampling, sometimes using batched materials, and then move on to the next species. Those which have had in-depth workups performed for different collections and at different times of years suggest this should be undertaken for any species that has only one published analysis.

What should always be kept in mind when encountering any species where a single given alkaloid composition and concentration is stated this indicates that said species has only been analyzed that one single time.

Analysis involving different tissues within a single plant have consistently produced divergent results suggesting that distribution WITHIN a given specimen is also an avenue worthy of greater in-depth exploration. Mescaline users already utilize this unequal distribution by removing and ingesting only the outer portions of green tissue from the cactus Trichocereus pachanoi as, while wasteful of much of its contained alkaloid, it generates material that contains a greater percentage of mescaline by weight than would the intact plant. Sadly much of this work is not published and due to the current illegality of such practices (whether sacramental or recreational) will probably never be published in detail.

In many cases not enough variables are noted to understand the reported differences. We would suggest that detailed information about the actual source, the specific part or parts investigated (young or old tissues can produce quite different results as can different internal structures), the date and time of day they were collected and details about how they were processed PRIOR to investigation become regarded as vital information to include along with the normal procedural workup. The word “dried”, as an example, can mean a number of things. For instance, freeze-dried material appears to give lower yields than does careful drying and standard extractions but whether this is the NORM remains to be evaluated.

Extraction approach can also generate differing results. Lengthy heating during Soxhlet extraction can cause changes compared to a room temperature soak being used. Similarly the use of acids during extraction, while valuable, can readily hydrolyze or otherwise alter some components.

The concentrations given are as they were reported in the literature. Many were calculated as the final yield of highly purified and repeatedly recrystallized alkaloids and will therefore be low values.

Identification criteria can be found in the occurrence lists under individual alkaloid entries. (Previously released in an abridged form as C-9 Appendix A)

This supplemental listing is primarily of the alkaloids & triterpenoids reported from cacti although we have taken the liberty of including some additional compounds and reports indicating either that alkaloids were present but not identified or else that alkaloids seemed to be absent. Many fruit or flower pigments, carbohydrate, mucilage & polyphenolic studies were omitted.

In every case possible, the original research reports were used for the entries below but in a few instances we relied on second-hand listings when the primary source paper was unavailable. (Instances are indicated in the text.) (%?) indicates both that the entry was from a second-hand listing and did not include a percentage.

Also included are notes of some errors appearing in the literature (an incomplete list). These are included simply to help the reader evaluate and resolve the conflicts they may find between this list and others. While making no note as to the source for any of these erroneous entries, they (and the reference that was cited) were included in hopes of reducing the number of errors being perpetuated in the future. We do not suggest people simply take us at our word over highly respected authorities and official databases; we do suggest that in these instances they look at the primary references given and determine the truth for themselves.

One point we would like to make concerning some of the disparities between various researchers is that Agurell & coworkers specifically did not look for any quaternary amines and therefore would not have detected any even if present in their material.

It is also important to note that some workers used young cultivated material grown from seed while others used adult field collected specimens. The claim has been presented, without any indication of its basis, that analytical results are identical between these sets of samples but the available work as will be detailed within does not support that assertion beyond a rough qualitative generalization. Both have value for understanding the chemistry of the plants but in no case can the analysis of a given species or specimen be reliably extrapolated to indicate what will be found in anything other than what was analyzed on the day that it was analyzed.

Cacti can sometimes be highly variable in appearances. This work attempts to present multiple images of single species in habitat and grown under different situations or in multiple hands whenever possible. One clear advantage to this being a PDF is the elimination of concerns about minimizing cost through limiting the number of color photos that are included.
Cactus Chemistry: By Species

Cactus taxonomy and names in this work

Many species have been renamed multiple times; a partial list of synonyms or points of potential confusion is included. Please see BACKEBERG, BRAVO, BRITTON & ROSE, ANDERSON, HUNT or the specific botanical authority listed for more nomenclatural or taxonomic details.

Some names have been changed so many times over the course of their analytical history that it can be difficult to locate comprehensive information about what has been published. The obscuring of analytical accounts by the proliferation of synonyms precluding effective indexing is an under appreciated problem. This is not limited to plants. My friend Jon Hanna pointed out a particularly amusing series of names changes. In a sweeping revision of Amphibia Bufo alvarius had its name changed to Cranopsis alvaria in 2006. Later in 2006 the name was changed again, by implication, to Ollotis alvaria. In 2008 it became Incilius alvarius. Incredibly the only one of its historical synonyms not resurrected in that process was Phrynodis alvarius. Few indexing services of publications can successfully manage to include all known synonyms of either plants or animals causing a fragmented access to the contents of scientific papers.

In many cases chemical work does not reflect the current name en vogue. We have often left names as encountered with efforts made only to reduce confusion. In this process we have employed what many may object to as outdated names.

This work is a compendium of published analytical accounts involving cacti rather than being a taxonomic treatment of cacti. Its just as likely that the following are presented however they were analyzed than with what is now their present accepted name.

Please be aware therefore that our use of one specific name over another does not necessarily indicate any agreement with or advocacy of that placement.

In a number of other cases older “splitter” synonyms were deliberately preserved to prevent lumping from obscuring some interesting analytical results.

A listing of synonyms is also incorporated so this should not cause any problems. Feedback is welcomed.

Some useful trivia

0.00X% indicates X milligrams per 100 grams. (i.e. 0.1% indicates 100 milligrams per 100 grams.)
0.01% by dry wt. is ~4.5 grams of alkaloid per 100 pounds dry wt. [i.e. 10 mg per 100 gm]
“5 to 25+ mg. per 100 grams of fresh” indicates approximately from ~0.01% to over 0.03% by wet wt.
Reported water content in some cacti has ranged from 62 to 95%. Around 90% water by weight is common.

Many entries based on bioassays of varieties of known active species were omitted from this work. More details on those and many of the other species that are included in this work can be found in the pages of Sacred Cacti Part A and/or Part B

Aviso concerning the results of Djerassi

It should emphasized that most, if not all, of the triterpenoids investigated by Djerassi (and other workers) were primarily artifacts of their isolation and analytical procedure. With only very few exceptions, it is not made clear if any of them actually exist in the plants and, if so, how much is there. In those few cases where it does appear that they actually may exist in the plant, it is as only a very small portion of the total triterpenoids recovered (The usual source for these triterpenoids & sterols was via acid hydrolysis of the corresponding glycosates.)

While it might therefore be debated as to whether these glycones are really properly listed as cactus components, since they are products arising from the hydrolysis of the mixed saponin fraction, it was deemed important to include them as they appear to have valuable chemotaxonomic significance.

Another point concerns Djerassi’s alkaloid investigations. Many species they reported as being devoid of alkaloids were later shown to contain alkaloids (sometimes in appreciable amounts). While not dismissing the possibility of individual variation between samples, we suspect their alkaloid screening technique played a significant role in at least some of the disparate results.

It was specifically flawed with regards to detecting mescaline, substances with similar solubilities or any neutral alkaloids. Djerassi’s primary criteria for detecting alkaloids:
1) The residue remaining from an initial ethanolic extract would form an alkaline solution when extracted with ether. [Ed.: Not all alkaloids are soluble in ether & not all alkaloids form alkaline solutions.]
2) Alkaloids could be isolated and obtained as crystalline material.
3) Positive Mayer test. (Apparently not used in many cases)

Djerassi sometimes noted the presence of unidentified materials but in many cases there was obviously material present they did not elaborate on or investigate further.

Djerassi repeatedly made the claim that alkaloids and triterpenoid glycosides are not found in the same plant. While this is obviously incorrect if made as a blanket statement when considering trace or low amounts, it might prove true that the presence of substantial amounts of either may preclude large amounts of the other simultaneously being present. A systematic overview and evaluation is needed before drawing any firm conclusions.
PDFs & books:

Watch for the return of *Sacred Cacti* in its 4th edition!
http://www.troutsnotes.com

San Pedro
Book is distributed by Moksha
http://www.entheobiblica.com/
PDF is at:
http://www.largelyaccurateinformationmedia.com/LAIM/SP.html

Opening comments from *Sacred Cacti*

Some Other Succulents

Cactus Chemistry By Species

The Cactus Alkaloids
formerly known as
Appendix A

Some Simple Tryptamines
Hardcopy & PDF
http://www.largelyaccurateinformationmedia.com/LAIM/SST2.html

What are our readers saying?
http://www.accurateinformationmedia.com/comments.htm

Websites:

Trout’s Notes
http://www.troutsnotes.com

Largely Accurate Information Media
http://www.largelyaccurateinformationmedia.com

Accurate Information Media
http://www.accurateinformationmedia.com
The Cactus Species

Assembled by Keeper Trout & friends

Acanthocereus pentagonus (L.) Britton & Rose
(Now Acanthocereus tetragonus (L.) Hummelinck)
“organ”, “pitahaya”, “pitahaya morada”,
“pitahaya naranjadas”, “night-blooming cactus”,
“barb-wire cactus” Powell & Weedon 2004 & Standley 1924
See comments in Activity Notes

Anhalonium elongata See as Ariocarpus trigonus

Anhalonium jourdanianum Lewin was determined to contain an unidentified but pharmacologically active alkaloid; Lewin 1894b. It cannot be demonstrably linked to Lophophora jourdaniana Hahnemann. [See comment under] Anderson 1980

Anhalonium lewinii Hennings See as Lophophora williamsii Anhalonium prismaticum Lemaire See as Ariocarpus retusus Anhalonium williamsii Rümpler See as Lophophora diffusa Anhalonium williamsii (Lemaire) Lemaire See as Lophophora diffusa [See Bruhn & Holmstedt 1974 for details]

Anisocereus foetidus (MacDougall & Miranda) Marshall
See as Perocereus foetidus
Anisocereus gaumeri (Britton & Rose) Backeb erg
See as Perocereus (?) gaumeri

Aporocactus flagelliformis (L.) Lemaire
“flor del cuerno”, “flor de cuerno”, “flor del látilo”, “herba de la alfrecia”, “junco”, “junquillo”, “cuerno”, “rat-tail cactus” Standley 1924: 917
Flowers contained Betanin (35.4% of total), Phyllocactin (59.8% of total) & an unidentified Betacyanin. Piattelli & Imperato 1969
See comments in Activity Notes

Ariocarpus agavoides (Castañeda) E.F. Anderson
3,4-Dimethoxy-N-methylphenethylamine (trace)
N,N-Dimethyl-3-methoxytyramine (trace)
Hordenine (Over 50% of 1-10 mg of total alkaloids/ 100 gm. fresh.) Bruhn & Bruhn 1973

Ariocarpus bravoanus Hernandez & Anderson
Lacks published analysis.
See comments in Activity Notes.

Ariocarpus bravoanus ssp. hintonii (Stuppy & Taylor) Anderson & Fritz Maurice
Lacks published analysis.
See comments in Activity Notes.

Ariocarpus denegrii (FBC) Marshall
See as Obregonia denegrii
Ariocarpus disciformis (DeCandolle) Marshall
See as Strombocactus disciformis

Ariocarpus fissuratus (Engelm) K.Schumann
“chaute”, “chaute”, “peyote cimarrón”, “peyote” (said to be erroneous) Standley 1924: 933
Hordenine (200 mg of sulfate from 1 kg dry) Heffter 1894b
N-Methyltyramine (%?) Diaz et al. 1977
See comments in the Activity Notes.

Ariocarpus fissuratus var. fissuratus (Rose) Marshall
3,4-Dimethoxy-N-methylphenethylamine (Major alkaloid. 0.004% dry wt.) Norquist & McLaughlin 1970
Hordenine (0.006% by dry weight) McLaughlin 1969
N-Methyltyramine (visual estimate of 10 mg from 1.92 kg dry) McLaughlin 1969

Ariocarpus fissuratus var. hintonii see as Ariocarpus bravoanus ssp. hintonii

Ariocarpus fissuratus var. lloydii (Engelm) Schumann
Hordenine (no quantification) McLaughlin 1969
N-Methyltyramine (no quantification) McLaughlin 1969

Ariocarpus furfuraceous see Ariocarpus retusus (most regard as retusus var. furfuraceous; lacks published analysis)

Ariocarpus hintonii see as Ariocarpus bravoanus ssp. hintonii

Ariocarpus kotschoubeyanus (Lemaire) Schumann
“pezuña de venado” (Nuevo León) Standley 1924: 933
78% water by weight
Hordenine (0.059% dry wt.) Neal et al. 1971b
N-Methyltyramine (0.015% dry wt.) Neal et al. 1971b
Reported to contain Betalains as pigments. Wohlfart & Mabby 1968 cited Dreding 1961
See Activity Notes for additional comments.

Ariocarpus retusus Scheidweiller
“chaute”, “chaute”, “peyote” (said to be an erroneous name) Standley 1924: 933
86% water by weight. Braga & McLaughlin 1969
3,4-Dimethoxy-N-methylphenethylamine (0.00047% dry wt) Neal & McLaughlin 1970
Hordenine (0.02% dry wt. 214 mg from 1.19 kg dry) Braga & McLaughlin 1969
N-Methyl-4-methoxyphenethylamine (0.00047% dry weight)
N-Methyltyramine (0.0016% by dry weight, i.e. 18.5 mg from 1.19 kg) Braga & McLaughlin 1969
Retusin (a flavonoid) & β-Sitosterol were recovered by Dominguez et al. 1968. This was the first isolation of retusin (tetramethylated quercetrine); formerly known as a synthetic compound (Gomm & Nierenstein 1931).
See Activity Notes for additional comments.
Ariocarpus scaphirostris BoeDECKER
(Originally misspelled Ariocarpus scapharostrus)
Hordenine (Major alkaloid of 4 in 0.012% total alkaloids)
N-Methyltyramine (no quantification)
3,4-Dimethoxy-N,N-dimethylphenethylamine (no quant.)
3,4-Dimethoxy-N-methylphenethylamine (no quant.)
Bruhn 1975b (Cultivated: California)

Ariocarpus trigonus (WEBER) SCHUMANN
3,4-Dimethoxy-N,N-dimethylphenethylamine (0.007% dry wt.)
Hordenine (Major alkaloid. 0.013% dry weight)
N-Methyltyramine (trace)
Speir et al. 1970
[Tyramine has been listed in error; the reference cited, Speir et al. 1970, did not report it from this species.]

Ariocarpus williamsii (Lemaire) Voss
See as Lophophora williamsii

Armatocereus humilis (Britton & Rose) BäckBERG
See as Lemaireocereus humilis
Armatocereus laetus (H.B.K.) BäckberG
See as Lemaireocereus laetus

Oddly the entire genus Astrophytum lacks published analysis

Astrophytum asterias (ZuccARINI) LemaIRE
“star cactus”, “peyote” (Standley 1924: 955)
Unpublished analysis failed to show the presence of alkaloids
(Martin Terry 2005; personal communication)

Astrophytum myriostigma LemaIRE
“mitra” (San Luis Potosi), “birreta de obispo” (Coahuila)
“bonete”, “peyote cimarrón” (Durango) Standley 1924: 955
Appears listed as containing unidentified alkaloid(s) but either the entry included no reference (ex. Soulaine 1947) or else the reference that was cited (Brown et al. 1968) did not mention the species.

See comments on the Astrophytum species in Activity Notes.

Astrocytrolindropuntia cylindrichca LAMARCK
[“Opuntia cylindrica” was erroneously listed as containing mescaline in the following reports: Coch Frugoni 1956(?), Cruz Sánchez 1948b, Gutiérrez-Noriega & Cruz Sanchez 1947, Marini-Bettolo & Coch Frugoni 1956, Marini-Bettólo & Coch Frugoni 1958 and, almost incredibly, Turner & Heyman 1960. Der Marderosian 1966 indicated that “correspondence with the original author” verified that their material had indeed been misidentified. While it was not specifically stated; Turner & Heyman were implied. All of the above were apparently based on misidentified plants. (Actual identity was almost certainly Trichocereus pachanoi in all instances. It is demonstrably the case in Cruz Sanchez 1948 where an unmistakable T. pachanoi photograph was included. This is also discussed in more detail in Part B; San Pedro]

More recently Opuntia cylindrica reverted to an older synonym Astralocylindropuntia cylindrica. Authenticated Opuntia cylindrica was determined to contain no measurable alkaloid in Agurell 1969b [Obtained via European commercial sources].

Astrocytrolindropuntia exallata BERGER
[Considered varietal to Opuntia subulata in Hunt 2006] 3,4-Dimethoxyphenethylamine (less than 0.01% dry wt.)
4-Hydroxy-3,5-dimethoxyphenethylamine (Less than 0.01% dry wt.) Ma et al. 1986 (Ostolaza #84284)

Astrocytrolindropuntia pachypus K.SCHUMANN
[sic as Opuntia pachypus]
The claim for the presence of Mescaline was made by Cayco Jimenez 1977 (page 91) but no reference was cited and nothing was included to support his assertion.

Astrocytrolindropuntia subulata (MühLENPFORDT) ENGELMANN
3-Methoxytyramine (no quantification)
An unidentified alkaloid was also present.
Meyer et al. 1980
88% of the daily CO2 uptake occurred through the leaves during the daytime but some occurred at night (under well watered conditions)
Nobel & Hartsock 1986

Aylostera pseudodeminuta (BäckberG) BäckberG
See as Rebutia pseudodeminuta

Aztekium ritteri (BöDEKER) BöDEKER
(Plants greenhouse grown in Czechoslovakia)
N-Methyltyramine (0.0031%)
3-Methoxytyramine (Less than 0.0001%)
Hordenine (Less than 0.0001%)
N,N-Dimethyl-3,4-dimethoxyphenethylamine (0.0036%)
Mescaline (0.0009%)
Anhalidine (0.0008%)
Pellotine (0.0026%)
Štarha 1994 (All % above are by fresh wt.)

Aztecoreus ayacuchensis Johns
Tyramine (0.135% by dry weight as HCl)
Lee et al. 1975 (cultivated in Arizona)

The genus Aztecoreus needs analysis.

Backbergia militaris (AndOT) Bravo ex Sanchez MEJORADA
3-Methoxytyramine (0.02% dry wt.) Pummangura & McLaughlin 1981a [Collected in Michoacan, Mexico] [Also in Pummangura et al. 1981b]; (Not identified by Ferrigni et al. 1984.)
3,4-Dimethoxyphenethylamine (0.025% dry wt. [as HCl]) Mata & McLaughlin 1980b; (Not identified Ferrigni et al. 1984.)

http://www.largelyaccurateinformationmedia.com
Cactus Chemistry: By Species

3,4-Dimethoxy-N-methylphenethylamine (Detected: No quantification) Ferrigni et al. 1984. 3,4-Dimethoxy-N,N-dimethylphenethylamine (0.0588% dry wt) PumMangura & McLaughlin 1981a; (Trace: Ferrigni et al. 1984.)

[3-Methoxyphenethylamine (Error. Based on typo in Ferrigni et al. 1984.)

[Phenethylamine (Error. Based on misreading of typo in Ferrigni et al. 1984.)

Also contains some isoquinolines [See Note]; (tetrahydro, dihydro and fully aromatic):

Heliamine (0.75% dry wt. [as HCl]) Mata & McLaughlin 1980b; 1.02% by dry wt. [as HCl]) PumMangura & McLaughlin 1981a; (Identified by ms/ms; but not mentioned in experimental account of isolations; Ferrigni et al. 1984)

Lemaireocereine (0.034% by dry wt. [as HCl]) PumMangura & McLaughlin 1981a [Also by PumMangura et al. 1981b]; (Not identified by ms/ms by Ferrigni et al. 1984)

N-Methylheliamine (Identified by ms/ms; Detected in an impure residue) Ferrigni et al. 1984

Dehydroheliamine (Identified by ms/ms; 0.07% by dry wt. isolated) Ferrigni et al. 1984

Dehydrolemaireocereine (Identified by ms/ms; 0.006% by dry wt. isolated) Ferrigni et al. 1984

Backebergine (Identified by ms/ms; 0.0126% by dry wt. isolated) Ferrigni et al. 1984

Isobackebergine (Identified by ms/ms; 0.022% by dry wt. isolated) Ferrigni et al. 1984

N-Methyllemaireocereine (possible presence; neither proven nor dismissed) Ferrigni et al. 1984

[7,8-Dimethoxy-3,4-dihydroisoquinoline is a typographical error intending 7,8-Dimethoxy-3,4-dihydroxyisoquinoline (i.e. Dehydrolemaireocereine) Ferrigni et al. 1984 was cited as the reference]

Unger et al. 1980 evaluated this species using MIKES and reported detecting 3 alkaloids but it is unclear exactly which isomers they observed. One appeared to be N-Methylheliamine.

[c] examination showed the presence of alkaloids and the absence of triterpene glycosides: Kircher 1982

Kircher reported the same sterols as they had encountered in L. schottii and also what they thought was Lauric acid.

Lipid content determined to be 7% by dry weight: Kircher 1982

Backebergia Note: One other partially saturated THIQ was depicted in Ferrigni’s line diagram key but appears to have been used as a synthetic intermediary and not isolated from the plant. It should be noted that besides having at least one typo in their key, the first two generic line diagrams are switched. [PEA ⇔ THIQ]

Borzicactus sepium (HBK) Britton & Rose

Flower contains Betain, Phyllocaclin, Isophyllocaclin and traces of Isobetain Piattielli & Imperato 1969

Brasiliopuntia brasiliensis (Willdenow) Berger

Positively identified in St uart 2003 as “chait”. Mucilage comprised of Arabinose (26.2%), Galactose (49.8%), Galacturonic acid (6.1%), Rhamnose (9.4%) & Xyllose (8.6%). Moyna & DiFabio 1978 (MAM 1308)

Popular ornamental purportedly used as an ayahuasca admixture and alone as a hallucinogenic. The claims were discredited by Stuart 2003.

See more comments in the Activity Notes.

Browningia candelaris (MEYEN) BR. & R.

In dried aerial parts:

0.0585% N-Acetyl-3,4-dimethoxyphenethylamine

0.0245% N,N-Dimethyl-3,4-dimethoxyphenethylamine

0.0327% N,N-Dimethyl-4-methoxyphenethylamine

0.0330% 4-Methoxymphetamine

Echeverria & Neimeyer 2012

Also see the interesting conjecture in Ostolaza 1987

The entire genus Browningia needs analysis.

Cactus grandiflora Linnaeus See as Selenicereus grandiflorus

Carnegiea euphorbioides (HAW.) Backeberg

See as Neobuxbaumia euphorbioides

Carnegiea gigantea (Engelmann) Britton & Rose

AKA “saguaro”, “sahuaros”, “suawarro”, “suwarro”, “suaharo”, “suguarro” Standley 1924; 909

87-88% water by weight Kircher 1982

3,4-Dimethoxyphenethylamine (“less than” 0.00145%) Bruh & Lundström 1976b (See Note A) & (trace) Bruh & Lundström et al. 1970

3-Methoxytyramine (trace) Bruhn et al. 1970 & (small amounts) Bruh & Lundström 1976b

Dopamine (0.26%, as HCl, reported from young cultivated plants [Raised in the Netherlands]; not observed in their analysis of wild-collected material [Collected in Arizona]) Bruhn & Lundström 1976b. [Reported in cortical tissue (pulp) at 1%; Callus tissue and adjacent areas had higher dopamine concentrations than healthy tissue (See Note B); Steele link et al. 1967 [Collected in Arizona]]

[Tyramine, 3,4-DiMeO-5-OH-PEA and 3,5-DiMeO-4-OH-PEA have also been erroneously listed for this species but the claims are not supported by Agurell 1969b (the reference that was cited).] Mescaline has been erroneously listed for this species. The claim is not supported by any of the references that were given. [i.e. Agurell 1969b, Kapadia & Favez 1970 [See Note C] and Mata & McLaughlin 1976.]

Carnegiea Isolated (0.7% dry wt) & named by Heyl 1928. (0.575% yield by dry weight (as HCl) in Ordaz et al. 1983.) Identified in Brown et al. 1968; Reported present in decent amounts (70% of total alkaloid content) in Brown et al. 1972b. [Presence also noted in Hodgkins et al. 1967] Also by Bruhn et al. 1970, who, unlike Brown, suggested presence in young plants but not in larger specimens. I am unable to determine details due to procedural differences. Also; 0.019% by fresh weight (2.9 grams of base from 15 kg fresh) Bruhn & Lundström 1976b [Agurell et al. 1971a is also cited but is not presently available.] Also isolated in Spath 1929.

Gigant c (5-Hydroxycarnegiea) (Identified) Brown et al. 1968

[See Note D]; Only reported in substantial amounts during analysis of wild collected adult cacti and found to be higher in growing tips (see also Brown et al. 1972b who found it
composed 25-30% of the total alkaloid content in the whole plant but 50% in the growing tip. [Said to comprise 30% of total alkaloid content in Hodgkins et al. 1967]

Bruhn & Lundstrom 1976b reported 0.0016% by fresh wt. (281.6 mg base from 15 kilos of fresh material) Not reported in greenhouse grown plants [Bruhn & Lundstrom 1976b]; nor in young plants grown outdoors in Arizona [Bruhn et al. 1970].

Salsolidine (Norcarcigene) Bruhn et al. 1970 & Bruhn & Lundstrom 1976b reported salsolidine to be the major alkaloid (0.02% fresh wt.: 3.2 grams of base from 15 kg fresh), whereas Brown et al. 1972b did not find salsolidine in any samples they tested. 0.47% yield by dry weight (as HCl) was reported in 1983. [See also Agurell et al. 1971a; See note above]

Arizonine (0.0036% by fresh wt.; 1.1 grams of base from 15 kg fresh) Bruhn & Lundstrom 1976b [See also Agurell et al. 1971a; See note above]

Heliamine (?) Lundstrom 1983 cited Pummmangura et al. 1983. [See also Agurell et al. 1971a; See note above]

Dehydroheliamine [0.0008% yield by dry weight (as HCl) was reported in Ordaz et al. 1983.]

Unger et al. 1980 evaluated this species using MIKES and reported detecting 4 (or 5?) quinolines. One was reported to be Salsolidine; another was either Carnegine or else isomeric with it. The exact isomeric identities of the rest was not clear to us. Two appeared to be trimethoxylated.

1-1.7% alkaloid (Carnegine and Giantamine) Kircher 1982 Glucaric acid (tlc by Kringstad & Nordal 1975)

Isocitric acid (tlc & gle by Kringstad & Nordal 1975)

Quinic acid (tlc & gle by Kringstad & Nordal 1975)

Vanillin, Syringaldehyde & p-Hydroxybenzaldehyde were found to be higher in healthy tissue than in callus tissue. A glycoside of 4-Hydroxybenzoic acid and Ferulic acid were reported as minor & trace components respectively.

3,4-Dihydroxybenzoic acid, Vanillic acid & p-Hydroxybenzoic acid were found in callus tissue along with trace amounts of p-Coumaric acid & Ferulic acid. Quercetin was also observed at 0.1% of the total callus but was absent from the ribs themselves. Steelink et al. 1967

tlc examination showed the presence of alkaloids and the absence of triterpene glycosides: Kircher 1982

Lipid content determined to be 2.5% by dry weight. 0.1% sterols: Campesterol, Sitosterol and 1 unknown sterol. Unable to detect any sterol or triterpene glycosides. Kircher 1982

Carbohydrates in healthy cortical tissue were reported to be composed of Glucose, Galactose (31% of all saccharide constituents), Xylose & Arabinose.

Galactose was lacking from the wound tissue. Steelink et al. 1968

http://www.largelyaccurateinformationmedia.com

Carnegia Notes:

A: Concerning my math-work for Bruhn & Lundstrom 1976b:

15 kg of fresh cactus yielded 32 grams of alkaloids. 80% was nonphenolic and 20% was phenolic. When purifying these fractions they only used 1 gram of the nonphenolic and 0.5 grams of the phenolic fractions. The amounts listed in their account is what was obtained from these aliquots rather than totals.

For all compounds except dopamine the yields were calculated, by kt, as if they had used all of their product and then recalculated them in terms of their free bases (Alkaloids were obtained as the hydrochloride salts in all cases except for Arizonine)

B: Dopamine concentrations were reported to increase with exposure to air or to ascorbic acid solutions.

In one case; a sample with 1.4% dopamine was taken. After 1 hour, a second sample, that was taken immediately next to the site of the first, showed 2.1%.

They also noted a a high dopamine content in samples taken near the base (which always has a heavy callus layer).

C: It should be noted that while listing Kapadia & Faye 1970, they used the volume, and a page number, in Kapadia et al. 1969.

D: The unusual substitution at the 5 position has also been observed in several other alkaloids found in Pachycereus pringlei, and Pachycereus weberi, as well as in Pachycereus fehuanpepecanas. (Gigante is also found in Pachycereus pecten-aboriginum.)

The question of whether any of the Pachycereus alkaloids are active as visionary compounds is an area overdue for evaluation. Preliminary evaluations depict them as rough and with a heavy body load yet some few people appear to like them. More study is clearly needed.

See also comments in the Activity Notes.

Cephalocereus chrysacanthus (Weber) Britton & Rose.

See as Pilocereus chrysacanthus

Cephalocereus columna-trajani (Karp.) K. Schumann

See as Cephalocereus hoppenstedtii

Cephalocereus eurhorboiides (How.) Brs & R.

See as Neobuxbaumia eurhorboiides

Cephalocereus gaumeri Britton & Rose is NOT synonymous with Pterocereus (?) gaumeri

Cephalocereus glaucescens (Labouret) Borg

This species was reported to show no detectable alkaloids in the alkaloid screenings of Smoleski et al. 1973.

Fruit contains Betanin (major), Phyllocactin and traces of Isophyllocactin & Isobetanin. Piattelli & Imperato 1969

Cephalocereus guerronitis (Bacc.) Buxb. See as Pilocereus guerreronis

Cephalocereus hoppenstedtii (A.Web.) K. Schumann

No detectable alkaloids.

Chalef 1980a cited Dominguez et al. 1969

Cephalocereus leucocephalus (Poseger) Britton & Rose

“napisora” (Pennington 1963: 155)

Cactus Chemistry: By Species

Fruit contains Betanin (major), Phyllocactin, Betanidin and traces of Isophyllocactin & Isobetanin. See comments in Activity Notes.

Cephalocereus maxonii Rose. See as Pilocereus maxonii

Cephalocereus melanothele Vaupel

Cephalocereus sp. (?) Peiffer

Claim purporting the presence of Mescaline is made by Caycho Jimenez 1977 (page 91) but he cites no reference and does not include anything that support the assertion.

Cephalocereus nubilis (Haworth) Britton & Rose

Fruit contains Betanin (major), Phyllocactin and traces of Isophyllocactin & Isobetanin. See as Lemaireocereus gynandra.

Cephalocereus senilis (Haworth) Peiffer

No detectable alkaloids. Agurell 1969b [Obtained via European commercial sources. NOT synonym for Mamillopsis senilis.]

Traces of unidentified triterpene(s) Djerassi 1957 cited unpublished observations by Djerassi & Marfey

Cephalocereus tetetzo (A. Weber.) Vaupel

See as Neobuxbaumia tetetzo

Cereus aethiops Haworth

Candicine (%)? Ruiz et al. 1973

Hordenine (%)? Ruiz et al. 1973

Tyramine (%)? Ruiz et al. 1973

Cereus alacriportanus Peiffer

Hordenine. (Sole alkaloid 1-10 mg/ 100 gm of fresh plant) Agurell 1969b [European commercial source]

Cereus azureus Parmentier

No detectable alkaloids. Agurell 1969b [European commercial source]

Cereus caespitosus Englemann & A. Gray = Echinocereus reichenbachii subs. caespitosus See comments under Echinocereus reichenbachii in Activity Notes.

Cereus comarapanus Cardenas

Flower contains Isophylocactin, Betanin, Phyllocactin & Isobetanin. Piattelli & Imperato 1969

Cereus coryne. See as Stetsonia coryne

Cactus divaricatus Lam. non Kuntze = Cereus divaricatus (Lam.) De Cand. See as Harrisia divaricata. See comment in Activity Notes.

Cereus fimbriatus. See as Lemaireocereus hystrix

See comment in Activity Notes.

Cereus gummosus. See as Machaerocereus gummosus

Cactus flagelliformis L. = Cereus flagelliformis (L.) Mill. See as Aporocactus flagelliformis

Cereus forbesii O.

Tyramine (Over 50 mg/ 100 gm of fresh) Agurell 1969b [European commercial source]

Cereus gigantens Englemann. See as Carnegiea gigantea

Cereus giganteus Englemann See as Carnegiea gigantea

Please note that, in the past, Trichocereus pachanoi has been sold (improperly) under the name Cereus giganteus and there is also a Karel Knize nomen nudum designated Trichocereus giganteus Knize n.n. There is also material in cultivation designated as Trichocereus peruvianus var. giganteus that is the same Knize nomen nudum.

Cereus glaucus Salmdyck

Hordenine (1-10% of 1-10 mg total alkaloids/ 100 gm of fresh plant) Agurell 1969b [European commercial sources]

Tyramine (Over 50% of 1-10 mg total alkaloids/ 100 gm of fresh) Agurell 1969b

Cereus grandiflorus Mill. See as Selenicereus grandiflorus

Cereus hirschtianus K. Schumann

Citrine acid (1.8% in stem juice) Hegnauer 1964 cited Bergström 1934

Cereus jamacaru De Candolle

“mandacaru’

Tyramine (total 0.2% crude but only 0.02% was recovered as the HCl) Bruhn & Lindgren 1976 [Obtained via the Kew]. (second to most abundant for Davet 2005)

N-Methyltyramine Davet 2005 (major alkaloid in Davet 2005)

Tyrosine Davet 2005

Hordenine Davet 2005

beta-Sitosterol Davet 2005

[Caffeine (0.08-0.11%) was reported in the seeds by Freise 1955 (1936?); and this was iterated in Wllamson & Schubert 1961, but Bruhn & Lindgren 1976, reported that they could detect NO caffeine in either the seeds or stems of this plant. Freise apparently reported it in only some samples of seeds but neglected to note how he identified it. No xanthine derivative has ever been demonstrably isolated from any cacti despite his claim. Bruhn & Lindgren 1976 reported no alkaloidal material in the seeds.]

[Hordenine appeared listed in error but more recently was reported. The reference cited initially, Agurell 1969b, did not investigate this species. Davet 2005 did.]

beta-Sitosterol Djerassi 1957 cited unpublished observations by Djerassi & Kan

The name cactin was assigned to a methionine rich albumin isolated from the seeds of Cereus jamacaru. It was found to resemble a protein found in Brazil nuts.

Aragão et al. 2000
Sultan had earlier used the name cactine for an uncharacterized alkaloid from *Selenicereus grandiflorus*.

The list of endophytes in Bezerra et al. 2013 suggests that the potential for bioactivity is worth study.

Alkaloid production of callous tissue culture was studied by de Oliveira & Machado 2003. Reported to contain Betalains as pigments.

Wohlpart & Mabry 1968 cited Dreiding 1961

Cereus macrostibas (K. Schumann) Berger

See as Neoraimondia macrostibas

Cereus peruvianus (Linnaeus) Miller

[See note on the next page.]

Hordenine (%? De Vries et al. 1971

Tyramine (trace) Agurell 1969b [Obtained via European commercial sources]

Reported to contain Betalains as pigments.

Wohlpart & Mabry 1968 cited Dreiding 1961

Erroneously listed both as a mescaline containing plant and as a hallucinogen.

See comments in Activity Notes.

Mucilage polysaccharide - 1.6% of total weight of fresh plant. Uronic acid content of polysaccharide: 44%

Rhamnose: arabinose, galactose (1:1:2)

Mindt et al. 1975

Cereus peruvianus is under intensive development for fruit production. The fruit is called koubo in Israel. It “can produce fruits 3-4 years after planting from seeds and 2-3 years after planting from cuttings. A 7-year-old plant can bear 60-80 kg of fruits annually.”

Ninio et al. 2003

The color of the peel changes from green to violet in the early stages of ripening and then from violet to red at the end of the process. The first appearance of color begins near the perianth scar becoming complete violet color about a week later. As ripening continues, the color of the peel changes to red, which is usually followed by the cracking of the fruit.

![All fresh wt. Ethanol-insoluble polysaccharides](Green 14 mg/g Purple 4 mg/g Red 4 mg/g)

<table>
<thead>
<tr>
<th>All fresh wt.</th>
<th>Green</th>
<th>Purple</th>
<th>Red</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol-insoluble polysaccharides</td>
<td>14 mg/g</td>
<td>4 mg/g</td>
<td>4 mg/g</td>
</tr>
<tr>
<td>Ethanol-soluble sugars</td>
<td>20 mg/g</td>
<td>~75 mg/g</td>
<td>110 mg/g</td>
</tr>
</tbody>
</table>

The main sugars that accumulated in the fruit pulp were Fructose and Glucose in a 1:1 ratio. Each one increased from 25 to 275 μmol/g fw during ripening. Sucrose was present in low concentration (0-10 μmol/g fw) which did not change significantly during ripening. The decrease in polysaccharide content is too low to account for the increases in soluble sugars so Ninio felt “it is likely that the observed accumulation of fructose and glucose during ripening is dependent on assimilated transport from the mother plant.”

Ninio also found that fruits which were harvested at the green stage contained lower levels of soluble sugars than red fruits. Their conclusion: “To obtain fruits of high quality with high sugar concentration, it is recommended to postpone fruit harvest as much as possible (before fruit cracks).”

Malic acid constituted 90% of the fruit’s organic acids. When the mature green fruit turned purple the content of malic acid decreased by half (from 50 to 25 μmol/g fresh weight) and remained constant for the rest of the ripening process.

Concentrations of citric, succinic, and oxalic acids were all lower than 4 μmol/g fw.

During ripening, the composition of the volatile components changed from being comprised of 2-Heptenal, (E,E)-2,4-Decadienal, (E,Z)-2,4-Decadienal, 2-Decenal & Benzoic acid at the mature green stage to being largely Linalool with smaller amounts of Epoxy linalool and 3,7-Dimethyl-1,5-octadiene-3,7-diol when violet, increasing dramatically when completely red. Those three compounds comprise 99% of the total volatiles in the ripe fruit.

Linalool reaches concentrations of 1.5-3.5 μg/g fresh weight in mature red fruits.

Ninio et al. 2003

The aroma of the fruit is the product of (S)-linalool and linalool derivatives.

The initial detection of linalool coincides with the development of the purple color and increases during ripening into a cracked red fruit. The highest values were found in fruit ripening in storage. These findings are in line with the reports that higher linalool levels accumulate in fruit ripening in storage compared to fruit ripening on the tree.

S(+)-Linalool was found to be the main volatile accumulating in the ripening fruit and was determined to occur in a remarkably high optical purity of 98%.

Sitrit et al. 2004

Note

Trichocereus macrogonus, T. pachanoi, T. peruvianus, T. sp. TJG & some material resembling what is known as Trichocereus argentinensis have all been improperly sold or published as photos in cactus books under this name. (As are other *Cereus* species)
Similarly “Cereus” sp. Peru 68.0235 at the Berkeley Botanical Gardens and the fat blue “Cereus” encountered mislabelled are both Trichocereus.

It appears probable that Cereus arequipensis, SOME of the material marked Cereus argentensis (but NOT true Cereus argentensis), Cereus bolivianus (No. 6231 in the NY Bot. Garden), some Cereus colossus (but NOT true Cereus colosseus), Cereus hempenianus Bauer, & Cereus tephracanthus bolivianus Weber, may prove to be active Trichocereus species once analyzed.

Cereus peruvianus var. monstrosus De Candolle
Tyramine (over 50% of 10-50mg total alkaloids/ 100 gm of fresh plant) Agurell 1969b [From European commercial source]

Cereus pilocereus is somehow a mistaken rendering referring to Pilocereus Sargentianus (i.e. Lophocereus schottii) that appears in some early medical literature (ex.: Remington et al. 1918)

Cereus rosei Werdemann See as Trichocereus peruvianus

Cereus sp. Miller
Claim for the presence of Mescaline is made by Caycho Jimenez 1977 (page 91) but no reference was cited and he does not include anything to support his assertion.

Cereus sp. (unidentified; Mexico) was reported to show detectable alkaloids in Smolenski et al. 1973.

Cereus speciosus K.Schumann
Reported to contain Betalains as pigments.
Wohlfart & Mabry 1968 cited Dreiding 1961

Cereus stenogonus K.Schumann
Flower contains Betanin, Phyllocactin (50.4% of total), Isophyllocactin & Isobetanin. Piattelli & Imperato 1969

Cereus stenogonus K.Schumann X Heliaporus smithii (Pfeiff.) Rowt.
Flower contains Betanin (60.9% of total), Isophyllocactin & Isobetanin. Piattelli & Imperato 1969

Cereus thouarsii Weber
Reported to contain Betalains as pigments.
Wohlfart & Mabry 1968 cited Dreiding 1961

Cereus validus Haworth
92.6% water by weight in March (fruiting)/ 88.1% in October (no fruit). (Argentina)
3-Nitrotyramine (0.19% dry wt) Neme et al. 1977 & (0.19% dry wt. in branches) Nieto et al. 1982
Tyramine (0.023%; branches; 0.377%; green fruit; 0.382%; ripe fruit; All by dry wt.) Nieto et al. 1982
[2 unidentified bases reported in all samples; Nieto et al. 1982]

Chamaecereus silvestrii (Spec.) Br. & R.
Reported to contain Betalains as pigments.
Wohlfart & Mabry 1968 cited Dreiding 1961
Weddelite was identified as druses.
Monje & Baran 2002

Cleistocactus baumannii (Lemaire) Lemaire
Weddelite was identified as druses and crystal sand.
Monje & Baran 2002

Cleistocactus jujuyensis (Backeberg) Backeberg
Flowers contain Betanin (major) & Phyllocactin Piattelli & Imperato 1969
Reported to contain Betalains as pigments.
Wohlfart & Mabry 1968 cited Dreiding 1961

Cleistocactus parviflorus (K.Schumann) Gosselin
Flower contains Betanin (major), Isophyllocactin, Betanidin & traces of Phyllocactin Piattelli & Imperato 1969

Cleistocactus smaragdiflorus (Weber) Britton & Rose
Flowers contain Phyllocactin, Isophyllocactin, Betanin & Isobetanin. Piattelli & Imperato 1969

The genus Copiapoa seemingly lacks analysis

Corynopuntia clavata (Engelmanna) Knuth
N-Methyltyramine (Major base; 0.51%) Vanderwerveen et al. 1974 [collected near Albuquerque, NM. 3 collections made].
Also isolated in Keller 1980
Tyramine (trace) Vanderwerveen et al. 1974

Corynopuntia emoryi (Engelmanna) Griffith
(Analyzed as Opuntia standleyi v. standleyi)
N-Methyltyramine (no quantification) Meyer et al. 1980
Tyramine (no quantification) Meyer et al. 1980

Corynopuntia invicta (Brandegee) Knuth
Hordenine (?)
N-Methyltyramine (no quantification)
Tyramine (no quantification) Meyer et al. 1980

Corynopuntia kunzei (Rose) Griffith
(Analyzed as Opuntia stanlyi v. kunzei)
N-Methyltyramine (0.05%) Meyer et al. 1980
Tyramine (no quantification) Meyer et al. 1980
Corynopuntia schottii **Engelmann**
Hordenine (0.049% dry wt)
N-Methyltyramine (0.018%)
Tyrine (no quantification)
Meyer et al. 1980
[Brown et al. 1968 found no detectable alkaloid in their sample of this species.]

Coryphantha humamma (Ehrenberg) Britton & Rose
3,4-Dimethoxy-N-methylphenethylamine (trace)
Hordenine (Over 50% of 10-50 mg of total alkaloids/100 grams of fresh plant)
N-Methyl-4-methoxyphenethylamine (trace)
Bruhn et al. 1975b [Wild collected; Guerrero, Mexico]

Coryphantha calipensis H.Bravo
β-Methoxy-3,4-dimethoxy-N,N-dimethylphenethylamine (40 mg from 2.56 kg fresh) **Bruhn & Agurell 1974**; (10-50% of over 50 mg of total alkaloids/100 grams fresh) **Bruhn et al. 1975b** [Wild collected; Puebla, Mexico]
β-Methoxy-3,4-dimethoxy-N-methylphenethylamine [Calipamine] (210 mg from 2.56 kg fresh) **Bruhn & Agurell 1974**; (10-50% of over 50 mg of total alkaloids/100 grams fresh) **Bruhn et al. 1975b**
3,4-Dimethoxy-N-methylphenethylamine (trace) **Bruhn & Agurell 1974 & Bruhn et al. 1975b**
Hordenine (trace) **Bruhn et al. 1975b**
N-Methyltyramine (trace) **Bruhn et al. 1975b**
Normacromerine (0.005% dry wt.) **Bruhn & Agurell 1974**.
[N,N-Dimethyl-3,4-dimethoxy-N,N-dimethylphenethylamine has also been listed in an alkaloid summary. One of the references given, Bruhn & Agurell 1974, did not report this alkaloid. The other, Bruhn 1975a, is presently unavailable to us.]
[Normacromerine has also been listed. The reference given, Bruhn 1975a, is presently unavailable to us.]
Isocitric acid (tlc, glc & gc-ms by Krungstad & Nordin 1975)

Coryphantha compacta (Engelmann) Britton & Rose
Needs an analysis. See Activity Notes

Coryphantha cornifera (De Candolle) Lemaitre
β-O-Methylsynephrine (no quantification)
3,4-Dimethoxy-N-methylphenethylamine (no quantification)
4-Methoxyphenethylamine (no quantification)
Hordenine (no quantification)
N-Methyltyramine (no quantification)
Synephrine (no quantification)
Horneman et al. 1972
[Macromerine has also been listed in error. The reference cited, Horneman et al. 1972, did not report this alkaloid.]

Coryphantha cornifera var. echinus (Engelmann) L.Benson
β-O-Methylsynephrine (no quantification)
3,4-Dimethoxy-N-methylphenethylamine (0.0007% dry wt.)
4-Methoxy-β-hydroxyphenethylamine (no quantification)
Hordenine (0.0006% dry wt.)
Macromerine (no quantification) [Macromerine also reported in Habermann 1974a (from štária nd)]
N-Methyl-4-methoxyphenethylamine (0.0002% dry wt.)
N-Methyltyramine (0.0002% dry wt.)
Synephrine (no quantification)
Horneman et al. 1972

Coryphantha durangensis (Rünge) Britton & Rose
3,4-Dimethoxy-N-methylphenethylamine (no quantification)
Hordenine (no quantification)
N-Methyltyramine (no quantification)
Synephrine (no quantification)
Horneman et al. 1972

Coryphantha echinus
See as *Coryphantha cornifera var. echinus*

Coryphantha elephantidens Lemaitre
Macromerine (no quantification)
β-O-Methylsynephrine (no quantification)
3,4-Dimethoxy-N-methylphenethylamine (no quantification)
Hordenine (no quantification)
N-Methyltyramine (no quantification)
Synephrine (no quantification)
Horneman et al. 1972
[N-Me-4-MeO-PEA has been reported in error, the reference cited, Horneman et al. 1972, did not report this alkaloid]

Coryphantha greenwoodii H.Bravo
β-Methoxy-3,4-dimethoxy-N,N-dimethylphenethylamine (10-50% of over 50 mg of total alkaloids/100 grams fresh) **Bruhn et al. 1975b**
β-Methoxy-3,4-dimethoxy-N-methylphenethylamine [Calipamine] (10-50% of over 50 mg of total alkaloids/100 grams fresh) **Bruhn & Agurell 1975b**; (As (-)-form: 0.034% dry wt.) **Ranieri et al. 1976**
β-O-Methylsynephrine (trace) **Bruhn et al. 1975b** and **Ranieri et al. 1976**
3,4-Dimethoxy-N,N-dimethylphenethylamine (trace) **Bruhn et al. 1975**
3,4-Dimethoxy-N-methylphenethylamine. (1-10% of over 50 mg of total alkaloids/100 grams fresh) **Bruhn et al. 1975**; (0.0095% by dry weight) **Ranieri et al. 1976**
3,4-Dimethoxy-N-formyl-β-hydroxy-N-methylphenethylamine **Shulgin & Shulgin 1997**
Coryphanthine (0.022%) **Meyer et al. 1983** Also observed by **Davis et al. 1983**
Hordenine (trace) **Bruhn et al. 1975**
Normacromerine (0.043% dry wt.) **Ranieri et al. 1976**
O-Methylcandicine (no quantification) **Meyer et al. 1983**
Synephrine (trace) **Ranieri et al. 1976**
Cactus Chemistry: By Species

Coryphantha macromeris (Engelmann) Lemaire

"Doha ana" "Big nipple cactus"

Macromerine (0.16% dry wt.) Brown et al. 1972a [Also observed as the major alkaloid in Brown et al. 1968]

Hodgkins et al. 1967 reported it to be the "main alkaloid".

Unidentified alkaloids were observed in Brown et al. 1968

[All of the many listings, or mention, of other alkaloids reported from this species (including normacromerine) are apparently in error as they all cited references, (such as Keller), that actually analyzed Coryphantha macromeris var. runyonii (C. runyonii). The equating of analytical reports for different varieties and the assumption that they could be viewed as generalized alkaloid profiles for the entire species, has lead to not a few unfortunate errors in the chemical literature; both in discussions and in tabular summaries.]

Normacromerine would not be surprising but someone needs to report it based on an actual analysis.

Mescaline is an erroneous listing. Barceloux 2008 confusedly includes Coryphantha macromeris along with "several South American cactus species [that] contain mescaline"

Coryphantha macromeris var. runyonii L. Benson

3,4-Dimethoxy-N-methylphenethylamine (trace) Agurell 1969b [Obtained via European commercial sources]; (0.0006% fresh) Keller et al. 1973.

Epinephrine (14.22 µg/gm fresh), Keller 1978.

Hordenine (trace) Agurell 1969b; (0.0004%) fresh) Keller et al. 1973.

Macromerine (Major alkaloid. 0.07% dry wt.) Below et al. 1968; (major alkaloid- over 50% of over 50 mg total alkaloids/ 100 gm fresh) Agurell 1969b; (0.0021% fresh) Keller et al. 1973.

Metanephrine (0.0002% fresh) Keller et al. 1973.

N-Formylmacromerine (0.0077% fresh) Keller et al. 1973; (0.19% dry wt.) Keller & McLauglin 1972

N-Methyl-4-methoxyphenethylamine (0.0005% fresh) Keller et al. 1973.

N-Methyltyramine (0.0019% fresh wt) Keller et al. 1973.

Norepinephrine (5.54 µg/gm fresh) Keller 1978.

Normacromerine [Major alkaloid. 0.0710% (fresh)] Keller et al. 1973. [Also isolated in Keller 1980] Conflicting assays; see Macromerine above in this entry.

Synephrine (0.0001% fresh wt) Keller et al. 1973.

Tyramine (trace) Agurell 1969b; (0.0001 fresh wt) Keller et al. 1973

[N-Me-4-OH-tyramine appears in the literature erroneously. It is probably a typo meaning N-Me-4-MeO-PEA or N-Me-4-OH-PEA. (Tyramine IS 4-OH-PEA)]

Coryphantha missouriensis (Sweet) Britton & Rose

3,4-Dimethoxy-N-methylphenethylamine (trace)

Hordenine (0.39% dry wt.)

N-Methyltyramine (0.013% dry wt.)

Tyramine (trace)

Pummangura et al. 1981

Coryphantha ottonis (Pfeiffer) Lemaire

4-Methoxynorephedrine (no quantification)

Hordenine (no quantification).

N-Methyltyramine (no quantification)

Synephrine (no quantification)

Hormeman et al. 1972

Coryphantha palmeri Britton & Rose

β-Sitosterol (0.003% dry wt)

Diotriacontane

Eicosanol

Galactose

Saccharose

Small amounts of an unsaturated triterpenol (a tetracyclic triterpenoid).

Small amounts of an unidentified alkaloid.

Domínguez et al. 1970

No detectable alkaloid. Chalet 1980e cited Domínguez et al. 1969

[Traces of Mescaline are seemingly implied to have been detected in this species but the account is unclear and does not specifically state it. Gennaro et al. 1996]

Needs additional analysis.

See comment & image in Activity Notes

Coryphantha pectinata (Engelmann) Britton & Rose

β-O-Methylsyneprine

3,4-Dimethoxy-N-methylphenethylamine

4-Methoxy-β-hydroxyphenethylamine

Hordenine

Macromerine

N-Methyl-4-methoxyphenethylamine

N-Methyltyramine

Synephrine

Hormeman et al. 1972 (no quantification)

Coryphantha poselgeriana (Dietrich) Britton & Rose

4-Methoxynorephedrine

Hordenine

N-Methyltyramine

Synephrine

Hormeman et al. 1972 (no quantification)

Coryphantha radians (Decandolle) Britton & Rose

Hordenine (1-10% of over 1-10 mg of total alkaloids/ 100 grams fresh) Bruhn et al. 1975 [Wild collected: Queréta-ro, Mexico].

N-Methyltyramine (Over 50% of 1-10 mg of total alkaloids/ 100 grams fresh) Bruhn et al. 1975

[Traces of Mescaline are seemingly implied to have been detected in this species but the account is unclear and does not specifically state it. Gennaro et al. 1996]
Coryphantha ramillosa Cutak
β-O-Methysynephrine (0.0015% dry wt. 1.9% of total alkaloid.) Sato et al. 1973.
Hordenine (0.73% in dry, 9.18% of total alkaloid.) Sato et al. 1973.
N-Methyl-4-methoxyphenethylamine (0.00092% dry wt.; 0.1% of total alkaloid.) Sato et al. 1973.
N-Methyltyramine (0.043% by dry weight. 5.5% of total alkaloid) Sato et al. 1973.
Sympnhrine (0.0057% dry wt.) Sato et al. 1973.

Coryphantha runyonii Britton & Rose See as Coryphantha macromeris var runyonii

Coryphantha scolymoides (Scheidweiler) A. Berger [excluded]
Traces of Mescaline reported (between 4-12 µg/gm fresh)
Genaro et al. 1996

Coryphantha tuberculosa as Escobaria tuberculosa Britton & Rose
Reported to contain druses of Weddellite.
Rivera & Smith 1979
(collected in the Marathon Basin, West Texas)

Coryphantha vivipara (Nuttall) Englemann
Hordenine (Sole alkaloid present. 10-50 mg/ 100 grams of fresh plant.) Brun et al. 1975 [Cultivated: Switzerland]
CO₂ uptake occurred entirely at night through the stems (under well watered conditions).
Nobel & Hartsock 1986

Coryphantha vivipara (Nuttall) Britton & Rose var. arizonica (Englemann) W.T. Marshall
Hordenine (0.017% by dry weight) Howe et al. 1977b
An unidentified quaternary alkaloid was reported by Brown et al. 1968

Cylindropuntia acanthocarpa Englemann & Bigelow
3,4-Dimethoxyphenethylamine (around 0.01% dry wt.)
4-Hydroxy-3,5-dimethoxyphenethylamine (Less than 0.01% dry wt.)
Mescaline (0.01% dry wt. [ie 10 mg/ 100 gm dry wt])
Ma et al. 1986 (Analysed F. Zeylmaker #8320)
[Hordenine has also been listed in error, this species is not included by TA Smith 1977; the reference cited.]
[Maeyer et al. 1980: traces of unidentified alkaloids]
Quercetin-3-rutinoside, Quercetin-3-glucoside and Kaempferol-3-glucoside (flavonoids) were reported in the flowers.
Clark et al. 1980 [Collected east of Florence, AZ]

Cylindropuntia echinocarpa Englemann & Bigelow
“silver cholla”
3,4-Dimethoxyphenethylamine (Around 0.01% dry wt.)
4-Hydroxy-3,5-dimethoxyphenethylamine (Around 0.01% dry wt.)
Mescaline (Around or less than 0.01% dry wt.)
Ma et al. 1986 (F. Zeylmaker #8327 & 8328)
See comments in Activity Notes.

Cylindropuntia fulgida Englemann
Unidentified alkaloids reported by Meyer et al. 1980
Quercetin-3-rutinoside, Quercetin-3-glucoside and Kaempferol-3-glucoside (flavonoids) were reported in the flowers.
Clark et al. 1980 [Collected east of Florence, Arizona]
Cholla gum was determined to contain Arabinose (51.6%), Galactose (31.7%), Galacturonic acid (11.2%), Rhamnose (2 or 3%) & Xylose (15.0%). (Gum degradation products were studied) Parikh & Jones 1966. [Sands & Klass 1929 found: Arabinose (53.2%), Galactose (8.4%), Galacturonic acid (11.5%) & Rhamnose (5.5%) They did not detect Xylose; Brown et al. 1949 reported L-Arabinose (6 parts), D-Galactose (3 parts), D-Galacturonic acid (1 part), L-Rhamnose (traces) & D-Xylose (2 parts)] See also Anderson et al. 1925

Cylindropuntia imbricata Haworth
3-Methoxytyramine (no quantification)
3,4-Dimethoxyphenethylamine (no quantification)
Mescaline (Not quantified)
Tyramine (no quantification)
Unidentified alkaloid also present.
Meyer et al. 1980
Reported to contain druses of Whewellite.
Rivera & Smith 1979
(collected on the campus of the University of Texas at Austin)

Cylindropuntia kleiniae DeCandolle
N-Methyltyramine (no quantification)
Tyramine (no quantification)
Meyer et al. 1980
Cactus Chemistry: By Species

Cylindropuntia leptocaulis DC
(AKA “tasajillo”)
Most often appearing in the literature as Opuntia leptocaulis.
Reported by Meyer et al. 1980 to contain traces of unidentified alkaloids.
It was reported to show no detectable alkaloids in the screenings of Smolenski et al. 1973.
Betacyanins reported as pigments.
Mabry et al. 1963

A number of compounds were isolated from Chaetomium globosum. This fungus was found inhabiting the rhizosphere of Opuntia leptocaulis.
- Globosuxanthone A (a new dihydroxanthenone)
- Globosuxanthone B (a new tetrahydroxanthenone)
- Globosuxanthone C (a new xanthone)
- Globosuxanthone D (a new xanthone)
- 2-Hydroxyvertixanthone
- Chrysazin (anthraquinone)
- 1,3,6,8-Tetrahydroanthraquinone
Wijeratne et al. 2006a

See additional comments in the Activity Notes.

Cylindropuntia whipplei (Engelmann & Bigelow) F.M. Knuth
3,4-Dimethoxyphenethylamine (less than 0.01% dry wt.)
Mey et al. 1986 (F. Zeylema #8501)

Cylindropuntia ramosissima (Engelmann) F.M. Knuth
3,4-Dimethoxyphenethylamine (less than 0.01% dry wt.)
Ma et al. 1986 (F. Zeylmaeker #8501)

Cylindropuntia spinosior (Engelmann) Toumey
Tyramine (0.0018% dry wt.)
3-Methoxytyramine (0.0011% dry wt.)
3,4-Dimethoxyphenethylamine, (trace)
Mescaline (0.00004% dry wt.) [Initially detected by Kruger et al. 1977] This is 40 μg per 100 grams of dried material.
Pardanani et al. 1978
Quercetin-3-rutinoside, Quercetin-3-glucoside and Kaempferol-3-glucoside (flavonoids) were reported in the flowers.
Clark et al. 1980 [Collected east of Florence, Arizona]

Cylindropuntia versicolor (Engelmann ex J.M. Coult) F.M. Knuth
Hordenine (no quantification)
N-Methyltyramine (no quantification)
Tyramine (no quantification)
Unidentified alkaloids were also present.
Meyer et al. 1980

Chemical studies have been performed on Aspergillus terreus. This fungus was found inhabiting the rhizosphere of Opuntia versicolor.
- Asterredione (a novel cyclopentenedione)
- (+)-5(6)-Dihydro-6-methoxyterrecyclic acid A (a new terrecyclic acid A derivative)
- (+)-5(6)-Dihydro-6-hydroxyterrecyclic acid A (a new terrecyclic acid A derivative)
- (+)-Terrecyclic acid A
- (-)-Quadrone
- Betulinan A
- Asterriquinone D
- Asterriquinone C
Wijeratne et al. 2003
See comments in Activity Notes.

Cylindropuntia whipplei (Engelmann & Bigelow) F.M. Knuth
3,4-Dimethoxyphenethylamine (no quantification)
Unidentified alkaloids were also present.
Mey et al. 1986

Cylindropuntia stanslyi Engelmann var. kunzei (Rose) L.Benson
See as Corynopuntia kunzei

Cylindropuntia stanslyi var. stanslyi Engelmann
See as Corynopuntia emoryi

Denmoza rhodacantha (Salm-Dyck) Britton & Rose
Candicine (%?) Nieto 1987

Dolichothele baumii (BoeDecker) Werdemann & Buxbaum
Dolichotheline (an imidazole)
6 unidentified alkaloids (tentatively)
Dingerdissen & McLauglin 1973b
Dehydrogeosmin - Minor volatile in the floral scent.
Sesquiterpene alcohol 1 - Trace volatile in the floral scent.
Sesquiterpene alcohol 2 - Minor volatile in the floral scent.
Schlumberger et al. 2004 (in tepals; gc-ms)

Dolichothele longimamma (DeCandolle) Britton & Rose
N-Methyl-4-methoxy-β-hydroxyphenethylamine (Longimammine: O-Methylsynephrine) (0.00037% dry wt.) Ranieri & McLaughlin 1976. [Reported in Ranieri & McLauglin 1975b]
Normacromerine (0.012% dry wt.) Ranieri & McLaughlin 1976. [Reported in Ranieri & McLauglin 1975b]
Synephrine (0.43% dry wt.) Ranieri & McLaughlin 1976. [Reported in Ranieri & McLauglin 1975b]
Also contains a few tetrahydroisoquinolines (If you ever doubted there are chemists with a twisted sense of humor…)

17
Longimammosine [6-Hydroxy-2-methyl-THIQ] (0.0019% dry wt.) Ranieri & McLaughlin 1976. [Reported in Ranieri & McLaughlin 1975b]
Longimammidine [8-Hydroxy-2-methyl-THIQ] (0.0019% dry wt.) Ranieri & McLaughlin 1976. [Reported in Ranieri & McLaughlin 1975b]
Longimammatine [6-Methoxy-THIQ] (0.0028% dry wt.) Ranieri & McLaughlin 1976. [Reported in Ranieri & McLaughlin 1975b]
Longimammamine [4,8-Dihydroxy-2-methyl-THIQ] (0.0008% dry wt.) Ranieri & McLaughlin 1976. [Reported in Ranieri & McLaughlin 1975b] Note: Do not confuse with Longimammine which is a phenethylamine.
Ubine (no quantification) Krüger et al. 1977; NOT reported in Ranieri & McLaughlin 1976
And Dolichothele (an imidazole) (Identified) Dingerdissen & McLaughlin 1973b (Also noted “...large number of unusual compounds that were unidentified...”)

Natural occurrence in the plant of lauric, myristic and other fatty acids esterified to the C-3 hydroxyl groups of assorted 12-Oleanane series triterpenes, including:
β-Amyrin, Erythrodiol, Longispinogetin, Methyl oleanolate, Maniladiol, Oleananate, Oleanolic aldehyde.
Spencer et al. 1983
Dehydrogeosmin - Minor volatile in floral scent.
Sesquiterpene alcohol 1 - Trace volatile in floral scent.
Sesquiterpene alcohol 2 - Minor volatile in floral scent.
Schlumberger et al. 2004 (in tepals; gc-ms)

Dolichothele melaleuca (DiETRICH) BRITTON & ROSE
Dolichothele (an imidazole)
(Tentatively) 6 unidentified alkaloids Dingerdissen & McLaughlin 1973b

Dolichothele sphaerica (DiETRICH) BRITTON & ROSE
Phenethylamine (traces) Keller 1982
β-O-Ethylsynephrine (0.0038% dry wt.) Dingerdissen & McLaughlin 1973a. Recovered via preparative tlc but said to have been shown to be an extraction artifact of Synephrine. Dingerdissen & McLaughlin 1973c
β-O-Methysynephrine (0.0060% dry wt.) Dingerdissen & McLaughlin 1973a. Recovered via preparative tlc: Dingerdissen & McLaughlin 1973c
N-Methylphenethylamine (0.0411% by dry weight) Dingerdissen & McLaughlin 1973a. Recovered via preparative tlc: Dingerdissen & McLaughlin 1973c
Synephrine (0.0033% dry wt.) Dingerdissen & McLaughlin 1973a. Recovered via preparative tlc: Dingerdissen & McLaughlin 1973c

Dolichothele (N-Isovalerylhistamine) 0.7% by dry wt: (no mention of other alkaloids) Roseberg & Paul 1969 & 1970; (0.65%: major alkaloid) Dingerdissen & McLaughlin 1973b (reported presence of other, mainly trace, alkaloids). (0.65% also reported in Dingerdissen & McLaughlin 1973a [Also said to be reported in Habermann 1974a from Štaráňa nd]) Detected in tlc in Dingerdissen & McLaughlin 1973c.

Dolichothele surculosa (BOEDECKER) F.BUXBAUM
Hordenine (0.178% dry wt.)
N-Methyltyramine.
N-Methylphenethylamine (0.25% by dry weight)
Synephrine (0.017% dry wt.)
The imidazole, Dolichothele was also identified.
[An unidentified imidazole was also reported]

Dingerdissen & McLaughlin 1973b
[Dingerdissen & McLaughlin 1973a is also cited as a reference but they DID NOT analyze this species]

Reported to contain Betalains as pigments (as *Mammillaria surculosa*). Wohlfart & Marby 1968 cited Dreiding 1961

Volatile components of the floral scent have been studied.
Dehydrogeosmin - Minor volatile in floral scent.
Sesquiterpene alcohol 1 - Trace volatile in floral scent.
Sesquiterpene alcohol 2 - Minor volatile in floral scent.
Schlumberger et al. 2004 (in tepals; gc-ms)

Dolichothele uberiformis (ZUCCARINI) BRITTON & ROSE
3,4-Dimethoxy-N-methylphenethylamine (0.007% dry wt.)
Hordenine (trace) [Also in Krüger et al. 1977]
N-Methyl-4-methoxyphenethylamine (0.004% dry wt.)
N-Methyltyramine (trace) [Also in Krüger et al. 1977]
Normacromerine (0.068% dry wt.) Synephrine (0.12%+ dry wt.)
Ubine (N,N-diMe-β-OH-PEA) (Major alkaloid. 0.24% dry wt.)
(-)-Longimammine (0.016% dry wt)
Longimammatine (trace)
Uberine (5-MeO-7-OH-2-Me-THIQ) (0.002% dry wt) [Also in Krüger et al. 1977]
Dolichothele (an imidazole) Dingerdissen & McLaughlin 1973b (Also noting a “...large number of unusual compounds that were unidentified...”)
[Augérell 1969b is cited as a reference by DID NOT analyze this species. Wheaton & Stewart 1970 also appears cited as a reference but DOES NOT mention this species.] Longimammamine was reported in error. Ranieri & McLaughlin 1977 did NOT observe this alkaloid.

See comments in Activity Notes.
Echinocactus arechavaletai Schumann.
See as Wiggensia arechavaletai
Echinocactus caespitosus was reported to contain an unidentified alkaloid by Brown et al. 1968

Echinocactus concinna MONVILLE. See as Notocactus concinna

Echinocactus grandis Rose
β-Sitosterol (0.005% by dry wt) Galactose, Rhamnose, traces of an aliphatic saturated tetrol & small amounts of a polyhydroxylated steroid. DOMINGUEZ et al. 1970 Reported to contain no detectable alkaloid. CHALET 1980a cited DOMINGUEZ et al. 1969 Synonym of Echinocactus playacanthus Link & Otto according to HUNT 1999.

Echinocactus horizonthalonius LEMAIRE
No detectable alkaloid. BROWN et al. 1968 Reported to contain druses of Weddellite. RIVERA & SMITH 1979. See comments on the Biominerals page.

Echinocactus hystrix HAW. See as Lemaireocereus hystrix
Echinocactus ingens PFEIFFER See as Echinocactus playacanthus
Echinocactus lewini K. SCHUMANN See as Lophophora williamsii

Echinocactus platyacanthus was reported to contain unidentified alkaloids. (from SOULAIRe 1947)

Echinocactus polycephalus ENGELMANN & BIGELOW Mes- caline was NOT observed at the levels they were capable of detecting. GennARO et al. 1996

Echinocactus polycephalus ENGELMANN & BIGELOW var. xeranthoides COULTEr
BROWN et al. 1968 reported to contain unidentified alkaloid.

Echinocactus pruinosa O. See as Lemaireocereus pruinosus
Echinocactus ritteri BOD. See as Aztekium ritteri

Echinocactus texensis HOPP
AKA the "Horse Cripper" or "Devil's Head" or "Viznaga" Reported to contain unidentified quaternary alkaloid(s) by BROWN et al. 1968

Echinocactus visnaga HOOKER Appears in the literature for a report of an unidentified alkaloid. Synonym of Echinocactus playacanthus Link & Otto according to HUNT 1999.

Echinocactus williamsii LEMAIRE ex SALM-DYCK See as Lophophora williamsii

Echinocereus acifer (OTTO) LEMAIRE
DOMINGUEZ et al. 1969 reported an unidentified alkaloid.

Echinocereus blanckii POSELGER ex RÜMPLER Has 94% water by weight N,N-Dimethylhistamine (0.016% by fresh wt/ 0.285% by dry wt. (as 2HCl)) 3,4-Dimethoxyphenethyamine (0.0065 % by fresh wt/ 0.114% by dry wt. (as HCl) Wagner & Grevel 1982b [N-Me-3,4-DiMeO-PEA has been listed in error. The reference, Wagner & Grevel 1982b, did not report this compound.] Citric acid (7.6% in stem juice) Hegnauer 1964 cited Bergström 1934

Echinocereus polycephalus Mescaline NOT observable at the levels they were capable of detecting. GennARO et al. 1996

Echinocereus chloranthus ENGELMANN
Brown et al. 1968 reported to contain unidentified alkaloid.

Echinocereus cinerascens (DeCANDOLLE) RÜMPLER 3,4-Dimethoxy-N,N-dimethylphenethyamine (0.01% fresh) Bruhn & Sánchez-Mejorada 1977 [Wild collected: Hidalgo, Mexico], 3,4-Dimethoxy-N-methylphenethyamine (0.002%; 1.95x10^4% fresh) Bruhn & Sánchez-Mejorada 1977 Glucaric acid (tlc by Kringstad & Nordal 1975)

Echinocereus enneacanthus var. stramineus (Engelmann) L.Benson “pitahaya” Standley 1924 Brown et al. 1968 reported to contain unidentified alkaloids. Contains large amounts of some form of Calcium oxalate. See a photo on the biomineral page in this work.

Echinocereus merkerii HILDM. 3,4-Dimethoxy-N,N-dimethylphenethyamine (no quantification) AGURELL et al. 1969 3,4-Dimethoxy-N-methylphenethyamine (no quantification) AGURELL et al. 1969 3,4-Dimethoxyphenethyamine (no quantification) AGURELL et al. 1969 and McFARLANE & SLAYTOR 1972 3-Methoxytyramine (no quantification) AGURELL et al. 1969 and McFARLANE & SLAYTOR 1972b Tyramine (no quantification) McFARLANE & SLAYTOR 1972b Hordenine (no quantification) AGURELL et al. 1969 and McFARLANE & SLAYTOR 1972b Candeine (no details) ShulgIN & ShulgIn 1997 Salsoline (no quantification) AGURELL et al. 1969; (no details) ShulgIN & ShulgIn 1997

Echinocereus pectinatus (Scheidweiler) Engelmann has been listed in error as containing hordenine. AGURELL 1969b, the reference cited for the claim, did not examine this species.

Echinocereus triglochidiatus ENGELMANN VAR. gurneyi BENSON Dihydroquercetin Dihydroquercetin 7-O-glucoside Dihydrokaempferol Dihydrokaempferol 7-O-glucoside Dihydromyricetin
Activity Notes

- **Echinocereus triglochidiatus** **Engelmann** var. **neomexicanus** **(Standley) Standley ex W.T. Marshall**

 N,N-Dimethylhistamine (no quantification) **Ferrigni** et al. 1982.

- **Echinocereus triglochidiatus** **Engelmann** var. **paucispinus** **Engelmann ex W.T. Marshall**

 N,N-Dimethylhistamine (no quantification) **Mata & McLaughlin** 1982 citing **Ferrigni & McLaughlin** 1981; unpublished results; (0.11% dry wt; isolation, tlc, mmp, pmr) **Ferrigni** et al. 1982.

 Echinocereus triglochidiatus has been listed as containing 5-Methoxy-N,N-dimethylhistamine but there is no basis for that assertion. (This compound was nowhere mentioned in the reference cited: i.e. Bye 1979. It does not appear to have ever been reported in nature.)

 This species has also had a report of 5-Methoxy-N,N-dimethyltryptamine or what was suspected to be 5-MeO-DMT (first mentioned as a possibility in Bye 1979, citing personal communication with J.L. McLaughlin, and later repeated as fact many other places.) **Schultes & Hofmann** 1979 & 1980 commented that whatever indole(s) they observed was as DMT.

 This was never proven. More importantly, Ferrigni et al. made a comment that whatever indole(s) they observed was present in trace amounts and was unstable in their extraction procedure. Unknown(s) were suspected of being indolic due to reacting with Ehrlichs reagent and forming a blue chromophore in TLC.

 Had unknown been DMT or 5-MeO-DMT, they would have been both stable and easily been recovered using their approach so, whatever the identity of their unidentified compound(s) turns out to be, it was decidedly NEITHER 5-MeO-DMT NOR DMT. They determined the main alkaloid present was dimethylhistamine.

 Some imidazoles are reactive with Ehrlichs reagent but Dimethylhistamine is not, more investigation is needed.

 To risk adding more confusion to the issue the plants being discussed are actually **E. coccineus** (tetraploid), var. **paucispinus** & var. **gurneyii**, and not **E. triglochidiatus** (which is diploid) This is also true for part of **neomexicanus**, but I do not know which Ferrigni used. See **Powell & Weedon** 2004. See comments in the Activity Notes.
Cactus Chemistry: By Species

Echinopsis multiplex (PFEIFFER) PFEIFFER & OTTO
Showed antitumor & antineoplastic activity.
See Activity Notes.
This species presently appears to lack any published analysis.

Echinopsis obscura (SALM-DYCK) K. SCHUMANN
Dehydroergostin - Trace volatile in floral scent.
trans-Nerolidol - Major volatile in floral scent.
Sesquiterpene alcohol 1 - Trace volatile in floral scent.
Sesquiterpene alcohol 2 - Trace volatile in floral scent.
SCHUMBERGER et al. 2004 (in tepals; gc-ms)
Echinopsis pachanoi (Britton & Rose) FriedricH & Rowley
See as Trichocereus pachanoi
Echinopsis pascacana (WEBER) FriedricH & Rowley
See as Trichocereus pascacana
Echinopsis peruviana (Britton & Rose) FriedricH & Rowley
See as Trichocereus peruviana
Echinopsis peruviana spp. puquiensis (RAUL & BACKEBERG) OSTOLAZA
See as Trichocereus puquiensis

Echinopsis rhodotricha K. SCHUMANN
Hordenine (Major alkaloid in the traces present)
Tryamine (10-50% of the traces of alkaloid present) AGURELL et al. 1971b [Commercial source: Netherlands]
[AGURELL 1969b reported no detectable alkaloid. European commercial sources]
Echinopsis scopulicola (RITTER) Mottram
See as Trichocereus scopulicola
Echinopsis spachiana (LEMARE) FRIEDRICH & ROWLEY
See as Trichocereus spachianus
Echinopsis strigosa (SALM-DYCK) FRIEDRICH & ROWLEY
See as Trichocereus strigosa
Echinopsis taquimbalensis (CARDENAS) FRIEDRICH & ROWLEY
See as Trichocereus taquimbalensis
Echinopsis terscheckii (FARMENIER) FRIEDRICH & ROWLEY
See as Trichocereus terscheckii
Echinopsis thelegonoides (SPEGAZZINI) FRIEDRICH & ROWLEY
See as Trichocereus thelegonoides
Echinopsis thelegona (WEBER) FRIEDRICH & ROWLEY
See as Trichocereus thelegon

Echinopsis triumphans R.MEY was reported to contain
Isocitric acid (tlc & glc by KRINGSTAD & NORDAL 1975)

Echinopsis tubiflora (PFEIFFER) ZUCCARINI
24¢-Methylcholesterol (33.1% of total)
Sitosterol (66.9% of total)
SALT et al. 1987

Echinopsis valida Monv. See as Trichocereus validus but please be aware that 2 or 3 different plants are sometimes called E. valida.

Epiphyllum sp.
Unsubstantiated and referenceless claim for the presence of mescaline is made by CAyCHO Jimenez 1977 (page 91). He does not include anything supporting his assertion.
Sterols isolated from leaves:
Avenasterol (8.4% of total)
24¢-Methylcholesterol (9.4% of total)
Stigmasterol (2.5% of total)
Sitosterol (75.5% of total)
24¢-Methylcholestenol (traces)
Sitostanol (4.2% of total)
SALT et al. 1987

Epiphyllum phyllanthoides (DC) SWEET
See as Nopalxochia phyllanthoides

Epithelantha micromeris (ENGELMANN) WEBER
Tryamine (less than 0.001%) ŠTARHA 1995b; (0.0003%) ŠTARHA 1994 [All of Štarha’s Epithelantha specimens were seed grown in Czechoslovakian greenhouses]
N-Methyltryamine (less than 0.001%) ŠTARHA 1995b; (0.0004%) ŠTARHA 1994
Hordenine (0.003%) ŠTARHA 1995b; (0.0026%) ŠTARHA 1994
3-Methoxytryamine (0.006%) ŠTARHA 1995b; (0.0059%) ŠTARHA 1994
3,4-Dimethoxyphenethylamine (0.440%) ŠTARHA 1995b [Note from Dr. ŠTARHA, rec’d. Jan. 1999 indicates this to be a typo intending 0.004% by fresh weight]; (0.0042%)
ŠTARHA 1994
N-Methyl-3,4-dimethoxyphenethylamine (less than 0.001%) ŠTARHA 1995b; (0.0010%) ŠTARHA 1994 (All values above are % by fresh weight.)
[Both DOMINGUEZ et al. 1969 and McGoughlin (unpublished) detected trace amounts of alkaloids.]
It should also be noted that WEST & McLoughlin 1977 isolated and crystallized the following (as acid hydrolysis products of the corresponding saponins):
Epithelanthic acid (Δ10,12-oxo-olean-3-en-28-oic acid)
(0.0008% dry wt)
Methyllepiphenanthane (a triterpene) (0.0004% dry wt)
Methylmachaerinate (a triterpene diol) (0.003% dry wt)
(Thought to possibly be an artifact arising from machaeric acid)
Oleanolic acid (a triterpene) (0.58% (crude) dry wt)
β-Sitosterol (a sterol) (0.001% dry wt)
An unidentified triterpene lactone (0.0002% dry wt)
Methyl oleanate (as 5% of oleanolic acid content; though to possibly be an artifact)
See Activity Notes.
The several varieties of this plant appear to lack analysis

Eriocereus guelichii (SPEZ.) BERG.
Fruit contains Phyllocactin, Betanin, Isobetanin & Isophyllocactin. PIATELLI & IMPERATO 1969
Eriocereus spp. This genus seriously needs some analysis.

Escobaria aguirreana (GLASS & FOSTER) TAYLOR
See as Gymnacactus aguirreanus
http://www.largelyaccurateinformationmedia.com

Escobaria missouriensis (Sweet) Hunt
See as Coryphantha missouriensis
Escobaria roseanaus (Boeckeler) Taylor
See as Gymnocalycium roseanaus Buxbaum
Escobaria tuberculosa
See as Coryphantha tuberculosa
Escobaria vivipara (Nuttall) Buxbaum
See as Coryphantha vivipara

Escontria chiotilla (Weber) Rose
86.3% water by weight
4-Hydroxy-3,5-dimethoxyphenethylamine (Around 0.01% dry wt.) Mx. et al. 1986
Longispinogenin [0.01% yield; dry wt.]
Maniladiol [0.1% yield; dry wt.]
Djerassi et al. 1956a [Collected at marker km 368 along Mexico City-Oaxaca Hwy, Puebla, Mexico]

Escontria gaumeri See as Pterocereus gaumeri

Espostoa huanucensis Ritter
Hordenine (0.002% dry wt.)
N-Methyltyramine (0.002% by dry weight)
Tyramine (0.004% by dry weight)
Mata et al. 1976a [Also Mata et al. 1976b]

Espostoa lanata (HBK) Br. & R.
Reported to be alkaloid negative (based on Mayer’s test showing no detectable alkaloid); also reported to lack triterpenes. Djerassi et al. 1955b [Wild collected in Peru]
Mata & McLaughlin 1976 also appears listed as a reference but they simply mentioned Djerassi’s work.

Ferocactus acanthodes (Lemaire) Britton & Rose
CO2 uptake occurred entirely at night through the stems (under well watered conditions)
Nobel & Hartsock 1986

Ferocactus hamatocanthus (Muellenfordthi) Britton & Rose
No detectable alkaloids.
Chalet 1980a cited Dominguez et al. 1969

Ferocactus latispinus (Haworth) Britton & Rose
No detectable alkaloids in the screenings of Fong et al. 1972

Ferocactus recurvus (Mill.) Berg.
No detectable alkaloids.
Chalet 1980a cited Dominguez et al. 1969

Ferocactus stainesii (Andot) Britton & Rose var. pringlei (Coulter) Britton & Rose
Reported to contain unidentified alkaloid(s). Chalet 1980a cited Dominguez et al. 1969

Ferocactus wislizeni (Engelmann) Britton & Rose
Unidentified alkaloids indicated. Brown et al. 1968

Glandulicactus crassihamatus (Weber) Marshall
Reported to contain unidentified alkaloid(s). Chalet 1980a cited Dominguez et al. 1969

Gymnocalycium aguirreanus Glass & Foster
Hordenine (2.26% dry wt.)
N-Methyltyramine (trace)
N-Methylphenethylamine (trace)
West et al. 1974

Gymnocalycium beguinii (Weber) Backeberg
Hordenine (trace)
N-Methyltyramine (trace)
N-Methylphenethylamine (trace)
West et al. 1974

Gymnocalycium horripilus (Lemaire) Backeberg
Hordenine (trace)
N-Methylphenethylamine (0.17% dry weight)
West et al. 1974

Gymnocalycium knuthianus (Boedecker) Backeberg
N-Methylphenethylamine (trace) West et al. 1974

Gymnocalycium mandragora (Eric) Backeberg
N-Methylphenethylamine (trace)
N-Methyltyramine (trace)
West et al. 1974.

Gymnocalycium roseanus (Boedecker) Glass & Foster
Hordenine (2.39% dry wt.)
N-Methylphenethylamine (trace)
N-Methyltyramine (trace)
West et al. 1974

Gymnocalycium sp. (thought to be a variety of G. roseanus)
N-Methylphenethylamine (0.04% dry wt.)
Hordenine (1.89% dry wt.)
West et al. 1974 [Collected from El Chiflon, Mexico]
Cactus Chemistry: By Species

Gymnocalycium achirasense Till & Schatzl
Tyramine (0.0001-0.001%)
N-Methyltyramine (Less than 0.0001%)
Hordenine (Between 0.0001-0.001%)
Mescaline (Less than 0.0001%)
N-Methylmescaline (Less than 0.0001%)
N,N-Dimethylmescaline (Less than 0.0001%)
Anhalinine (Less than 0.0001%)
Anhalonidine (Less than 0.0001%)
O-Methylanhalonidine (Less than 0.0001%)
Anhalonine (Less than 0.0001%)
Lophophorine (Less than 0.0001%)

Štárha et al. 1998 (% by fresh weight)

Gymnocalycium albispinum B. & R. Knuth
Tyramine (Between 0.0001-0.001%)
N-Methyltyramine (Less than 0.0001%)
Hordenine (Between 0.0001-0.001%)
Anhalinine (Less than 0.0001%)
Anhalidine (Trace)
Anhalonidine (Less than 0.0001%)
Pellotine (Trace)
Lophophorine (Trace)

Štárha et al. 1997 (% by fresh weight)

Gymnocalycium andreae (Böd.) B. & R. Knuth
Betains. Wohlpart & Marby 1968 cited Dreiding 1961
trans-β-Ocimene - Minor volatile in floral scent, absent in some
Dehydrogeosmin - Minor volatile, major or absent in some;
present in 73%, absent in 15%, questionable in 12%. Heptadecene - Minor volatile, trace in some.
Bergamotene - Minor volatile.
β-Farnesene - Major volatile, trace or absent in some.
Sesquiterpene alcohol - Trace volatile, absent in some.
Alkane - Trace volatile, absent in some.
Eudesman-3,7-dien? - Minor volatile, absent in some.
trans-Nerolidol - Major volatile, trace or absent in some.
Alkene 1 - Minor volatile, trace in some.
Sesquiterpene alcohol 1 - Minor volatile, trace in some.
Sesquiterpene alcohol 2 - Minor volatile.
Alkene 2 - Minor volatile, absent in some.
Alkene 3 - Minor volatile, trace in some.
Highly variable among cultivated individuals. 19 of 20 showed floral scent dominated by either β-Farnesene or trans-Nerolidol; 1 specimen had Dehydrogeosmin as the largest peak.

Six wild specimens from Argentina had a uniform floral scent composed almost entirely of β-Farnesene.

Schlumberger et al. 2004 (in tepals; gc-ms)

Gymnocalycium anisitsii (K. Schumann) Br. & R.
Tyramine (less than 0.0001%)
Hordenine (approximately 0.001%)

Gymnocalycium asterium Ito
Tyramine (0.00089% [± 0.00013])
N-Methyltyramine (0.00012% [± 0.00004])
Hordenine (0.000105% [± 0.00001])
Mescaline (0.000113% [± 0.000002])
N-Methylmescaline (0.000031% [± 0.00004])
O-Methylanhalonidine (0.00011% [± 0.00002])
Anhalidine (Trace)
Anhalonidine (Trace)
Pellotine (Trace)
Lophophorine (Trace)

Štárha et al. 1997 (% by fresh weight)

Gymnocalycium baldianum (Spagazzini) Spagazzini
Tyramine (less than 0.0001%)
Hordenine (approximately 0.001%)
Mescaline (less than 0.0001%)
Anhalinine (less than 0.0001%)
Anhalidine (less than 0.0001%)
Anhalamime (less than 0.0001%)
Anhalonidine (less than 0.0001%)
Pellotine (less than 0.0001%)
Anhalonine (less than 0.0001%)
Lophophorine (less than 0.0001%)

Štárha 1996 (% by fresh weight)

Gymnocalycium bayrianum Till.
Tyramine (between 0.0001-0.001%)
Hordenine (between 0.0001-0.001%)
N-Methyltyramine (less than 0.0001%)
Anhalinine (less than 0.0001%)
Anhalidine (less than 0.0001%)
Anhalamine (less than 0.0001%)
Anhalonidine (less than 0.0001%)
Pellotine (less than 0.0001%)
Anhalonine (between 0.0001-0.001%)
Lophophorine (less than 0.0001%)

Štárha 1996 (% by fresh weight)

Gymnocalycium bodenbenderianum ssp. intertextum
Dehydrogeosmin - Major volatile in the flower scent.
Sesquiterpene alcohol 1 - Minor volatile in floral scent.
Sesquiterpene alcohol 2 - Major volatile in floral scent.
Scent emission from the apical half of tepal was dominated by Dehydrogeosmin and Sesquiterpene alcohol 1; basal half was dominated by β-Farnesene.

Schlumberger et al. 2004 (in tepals; gc-ms)
Gymnocalycium boszingianum Schütz
Tyramine (between 0.0001-0.001%)
Hordenine (approximately 0.001%)
Anhalinine (between 0.0001-0.001%)
N-Methylmescaline (less than 0.0001%)
Anhalonidine (between 0.0001-0.001%)
Pellotine (approximately 0.001%)
Anhalonine (less than 0.0001%)
Lophophorine (less than 0.0001%)
Štárha 1996 (% by fresh weight)

Gymnocalycium bruchii (Spegazzini) Hosseus
trans-β-Ocimene - Minor volatile in floral scent.
Dehydrogeosmin - Major volatile, minor in some.
trans-Nerolidol - Major volatile, absent in some.
Sesquiterpene alcohol 1 - Minor volatile, trace in some.
Sesquiterpene alcohol 2 - Minor volatile, major in some.
Schlumberger et al. 2004 (in tepals; gc-ms)

Gymnocalycium calochlorum (BoeDecker) Y.ITO
Mescaline (between 0.0001-0.001%)
Tyramine (between 0.0001-0.001%)
N-Methyltyramine (less than 0.0001%)
Hordenine (between 0.0001-0.001%)
N-Methylmescaline (less than 0.0001%)
Anhalinine (less than 0.0001%)
Anhalonidine (less than 0.0001%)
Pellotine (less than 0.0001%)
Anhalonine (less than 0.0001%)
Lophophorine (less than 0.0001%)
Štáha 1996 (% by fresh weight)

Gymnocalycium carminanthum Borth & Koop
Tyramine (0.00007% [± 0.00003])
N-Methyltyramine (Trace)
Hordenine (0.00016% [± 0.00005])
Mescaline (0.00006% [± 0.00005])
N-Methylmescaline (Trace)
N,N-Dimethylmescaline (0.00008% [± 0.00002])
O-Methylanhalidine (0.0007% [± 0.00002])
Anhalamine (0.00088% [± 0.00003])
Anhalonidine (Trace)
Štáha et al. 1998 (% by fresh weight)

Gymnocalycium chubutense Spegazzini
Tyramine (Between 0.0001-0.001%)
N-Methyltyramine (Between 0.0001-0.001%)
Hordenine (approximately 0.001%)
N-Methylmescaline (Between 0.0001-0.001%)
O-Methylanhalidine (Less than 0.0001%)
O-Methylanhalonidine (Less than 0.0001%)
Anhalonidine (Less than 0.0001%)
Pellotine (Between 0.0001-0.001%)
Anhalonine (Between 0.0001-0.001%)
Lophophorine (Between 0.0001-0.001%)
Štáha et al. 1997 (% by fresh weight)

Gymnocalycium comarapense Backeberg
Tyramine (Between 0.0001-0.001%)
N-Methyltyramine (Less than 0.001%)
Mescaline (Less than 0.001%)
N-Methylmescaline (Less than 0.001%)
Anhalamine (Less than 0.001%)
Pellotine (Less than 0.001%)
Štáha 1995 (% by fresh weight)

Gymnocalycium curvispinum Fríc
Tyramine (between 0.0001-0.001%)
N-Methylmescaline (lessthan 0.0001%)
Hordenine (less than 0.001%)
Mescaline (Trace)
N-Methylmescaline (Trace)
Anhalamine (Trace)
Anhalonidine (Trace)
Pellotine (Trace)
Štáha et al. 1998 (% by fresh weight)

Gymnocalycium delactii Backeberg
Tyramine (less than 0.001%)
N-Methyltyramine (less than 0.001%)
Hordenine (approximately 0.001%)
Mescaline (Trace)
N-Methylmescaline (Trace)
Anhalamine (Trace)
Pellotine (less than 0.001%)
Štáha 1996 (% by fresh weight)

Gymnocalycium denudatum (L.&O.) Pfeiff.
Tyramine (0.00066% [± 0.00006])
N-Methyltyramine (0.00061% [± 0.00002])
Hordenine (0.00052% [± 0.00005])
Mescaline (Trace)
N-Methylmescaline (0.00008% [± 0.00001])
N,N-Dimethylmescaline (0.00073% [± 0.00005])
O-Methylanhalidine (0.00025% [± 0.00003])
Anhalamine (0.00006% [± 0.00002])
O-Methylanhalonidine (0.0001% [± 0.00002])
Anhalidine (Trace)
Anhalamine (0.00048% [± 0.00002])
Anhalonidine (Trace)
Štáha et al. 1998 (% by fresh weight)

Gymnocalycium eytianum Cárdenas
Weddelite was identified as druses.
Monje & Baran 2002
Cactus Chemistry: By Species

Gymnocalycium fleischerianumBackeberg

Tyramine (0.0001-0.001% dry wt.)
N-Methyltyramine (0.001% dry wt.)
Hordenine (0.0001-0.001% dry wt.)
Mescaline (0.0001-0.001% dry wt.)
N-Methylmescaline (0.0001-0.001% dry wt.)
N,N-Dimethylmescaline (0.0001-0.001% dry wt.)
Anhalamine (0.0001-0.001% dry wt.)
Anhalonidine (0.00005% [± 0.00003])
N,N-Dimethylmescaline (0.00279% [± 0.0005])
N-Methylmescaline (Trace)
Mescaline

Gymnocalycium gibbosum (Haworth) Pfeiffer

92.1% water by weight (pH of juice: 4.6-5.0) Herrero-Ducloix 1930b
Tyramine (Less than 0.0001%) Štárha et al. 1997
N-Methyltyramine (approximately 0.001%) Štárha et al. 1997
Hordenine (approximately 0.001%) Štárha et al. 1997
Mescaline (unquantified and tentatively identified. Colorless birefringent crystals, n 1.544, mp 160-162° claimed to show the "reactions of mescaline") Herrero-Ducloix 1930b. Not observed by Štárha et al. 1997.
N-Methylmescaline (Between 0.0001-0.001%) Štárha et al. 1997
N,N-Dimethylmescaline (Less than 0.0001%) Štárha et al. 1997
O-Methylthalamalidine (approximately 0.001%) Štárha et al. 1997
Anhalamine (approximately 0.001%) Štárha et al. 1997
O-Methylhalonamidine (approximately 0.001%) Štárha et al. 1997
Anhalidine (Between 0.0001-0.001%) Štárha et al. 1997
Anhalaline No quantification (or accurate identification) attempted; Herrero-Ducloix 1930b [Our source was Reti; CA gives this as Anhaloline. We presently lack the primary paper.] (approximately 0.001%) Štárha et al. 1997
Anhalonidine (Less than 0.0001%) Štárha et al. 1997
Pellotine (Between 0.0001-0.001%) Štárha et al. 1997
Anhalamine (Between 0.0001-0.001%) Štárha et al. 1997
Lophophorine No quantification (or accurate identification) attempted; Herrero-Ducloix 1930b (Between 0.0001-0.001%) Štárha et al. 1997
[All of Štárha’s values are % by fresh wt]

Gymnocalycium horridispinum Frank

Mescaline (between 0.0001-0.001%)
Tyramine (approximately 0.001%)
N-Methyltyramine (less than 0.0001%)
Hordenine (approximately 0.001%)
N-Methylmescaline (less than 0.0001%)
Anhalamine (less than 0.0001%)
Pellotine (less than 0.0001%)
Štárha 1996 (% by fresh weight)

Gymnocalycium leeanum (Hooker) Br. & R.

Anhalonidine (Unconfirmed) Herrero-Ducloix 1930b
Not observed by DeVries et al. 1971
Hordenine (%?) DeVries et al. 1971
Lophophorine (Unconfirmed) Herrero-Ducloix 1930b
Not observed by DeVries et al. 1971
Mescaline (Unconfirmed) Herrero-Ducloix 1930b
Not observed by DeVries et al. 1971
N-Methyltyramine (%? DeVries et al. 1971
Tyramine (0.00583%) DeVries et al. 1971

Gymnocalycium masoneri (Fric) Ito

Tyramine (Less than 0.0001%)
N-Methyltyramine (Less than 0.0001%)
Hordenine (Approximately 0.001%)
N-Methylmescaline (Between 0.0001-0.001%)
Štárha et al. 1997 (% by fresh weight)

Gymnocalycium mazanense Backeberg

N-Methyltyramine (Less than 0.0001%)
Tyramine (Between 0.0001-0.001%)
Hordenine (Approximately 0.001%)
Štárha 1996 (% by fresh weight)

Gymnocalycium megalotheles (Sencke) Britton & Rose

Tyramine (Approximately 0.001%)
Hordenine (Between 0.0001-0.001%)
N-Methyltyramine (Less than 0.0001%)
Anhalamine (Less than 0.0001%)
Anhalonidine (Less than 0.0001%)
Štárha 1996 (% by fresh weight)

Gymnocalycium mesopotamicum Kiessling

Tyramine (Trace)
N-Methyltyramine (Trace)
Hordenine (Trace)
Mescaline (Trace)
N-Methylmescaline (Trace)
N,N-Dimethylmescaline (0.00279% [± 0.0005])
Anhalamine (0.0019% [± 0.00028])
Anhalonidine (0.00005% [± 0.00003])
Štárha et al. 1998 (% by fresh weight)

Gymnocalycium mihanovichii (Fric & Gürke) Britton & Rose

Hordenine (less than 0.0001%)
Tyramine (between 0.0001-0.001%)
Štárha 1996 (% by fresh weight)
Reported to contain Betalains as pigments. Wohlpard & Marry 1968 cited Dreiding 1961

Gymnocalycium monvillei (Lemaire) Britton & Rose

Tyramine (Between 0.0001-0.001%)
N-Methyltyramine (Between 0.0001-0.001%)
Hordenine (Approximately 0.001%)

25
Mescaline (Less than 0.0001%)
N-Methylmescaline (Less than 0.0001%)
N,N-Dimethylmescaline (Less than 0.0001%)
O-Methylanhalidine (Less than 0.0001%)
Anhalaline (Less than 0.0001%)
O-Methylanhalonidine (Less than 0.0001%)
Anhalidine (Less than 0.0001%)
Anhalamine (Less than 0.0001%)
Anhalonidine (Between 0.0001-0.001%)
Pellotine (Between 0.0001-0.001%)
Anhalonine (Between 0.0001-0.001%)
Lophophorine (Less than 0.0001%)
ŠTARHA et al. 1997 (% by fresh weight)

Dehydrogeosmin - Major volatile in floral scent, minor or absent in some.
Sesquiterpene alcohol 1 - Minor volatile, trace in some.
Sesquiterpene alcohol 2 - Minor volatile.
Dehydrogeosmin present in 85% of their samples, absent in 5%, questionable in 10%.
SCHLUMBERGER et al. 2004 (in tepals; gc-ms)

Gymnocalycium moserianum SCHUTZ
Tyramine (0.00077% [+ 0.0001])
N-Methyltyramine (0.0001% [± 0.00003])
Hordenine (0.00011% [± 0.00003])
Mescaline (0.00007% [± 0.00001])
N,N-Dimethylmescaline (0.00009% [± 0.00002])
O-Methylanhalidine (0.00012% [± 0.00006])
Anhalamine (0.00019% [± 0.00004])
Anhalonidine (0.00008% [± 0.00002])
ŠTARHA et al. 1997 (% by fresh weight)

Gymnocalycium oenanthemum BACKEBERG
Tyramine (Between 0.0001-0.001%)
N-Methyltyramine (Less than 0.0001%)
Hordenine (approximately 0.001%)
Mescaline (Less than 0.0001%)
N,N-Dimethylmescaline (Less than 0.0001%)
O-Methylanhalidine (Less than 0.0001%)
Anhalaline (Less than 0.0001%)
Anhalamine (Less than 0.0001%)
Anhalonidine (Less than 0.0001%)
Pellotine (Less than 0.0001%)
Anhalonine (Less than 0.0001%)
Lophophorine (Less than 0.0001%)
ŠTARHA et al. 1998 (% by fresh weight)

Gymnocalycium paraguayense SCHUTZ
Tyramine (0.00047% [± 0.00004])
N-Methyltyramine (0.00104% [± 0.00014])
Hordenine (0.00043% [± 0.00008])
Mescaline (0.00011% [± 0.00006])
N,N-Dimethylmescaline (0.00041% [± 0.0001])
Anhalamine (0.00047% [± 0.0001])
Anhalonidine (0.00017% [± 0.00006])
ŠTARHA et al. 1996 (% by fresh weight)

Gymnocalycium pflanzii (VAUPEL) WERDERMANN
Tyramine (approximately 0.001%)
Hordenine (between 0.0001-0.001%)
N-Methyltyramine (less than 0.0001%)
N-Methylmescaline (less than 0.0001%)
Anhalinine (less than 0.0001%)
Anhalamine (less than 0.0001%)
Anhalonidine (less than 0.0001%)
Pellotine (between 0.0001-0.001%)
Anhalonine (between 0.0001-0.001%)
Lophophorine (between 0.0001-0.001%)
ŠTARHA et al. 1996 (% by fresh weight)

Gymnocalycium platense (SPEGAZZINI) BRITTON & ROSE
Wedellite was identified as druses.
MONJE & BARAN 2002

Gymnocalycium pungens FLEISCHER
Hordenine (approximately 0.001%)
Tyramine (between 0.0001-0.001%)
ŠTARHA 1996 (% by fresh weight)
Cactus Chemistry: By Species

Gymnocalycium quehlianum (Haage) Berg.
Tyramine (Between 0.0001-0.001%)
N-Methylytryamine (Between 0.0001-0.001%)
Hordenine (approximately 0.001%)
Mescale (Less than 0.0001%)
N-Methylmescale (Less than 0.0001%)
N,N-Dimethylmescale (Less than 0.0001%)
Anhaline (Less than 0.0001%)
O-Methylanhaloamide (Between 0.0001-0.001%)
Anhaloamide (Less than 0.0001%)
Pellotine (Less than 0.0001%)
Anhalonidine (Less than 0.0001%)
Lophophorine (Less than 0.0001%)
Štarha et al. 1997 (% by fresh weight)

Gymnocalycium ragonesii Cast.
Tyramine (0.00009% ± 0.00002)
N-Methylytryamine (0.00005% ± 0.00001)
Hordenine (0.0035% ± 0.00014)
Mescaline (Trace)
N-Methylmescale (Trace)
N,N-Dimethylmescale (Trace)
O-Methylanhaloamide (0.00048% ± 0.00003)
Anhalin (0.00109% ± 0.00018)
O-Methylanhaloamide (0.00007% ± 0.00001)
Anhalidine (0.00006% ± 0.00001)
Anhaloamide (Trace)
Pellotine (Trace)
Štarha et al. 1998 (% by fresh weight)

Gymnocalycium riojense Frič ex H.Till & W.Till
ssp. kozelskyanum Schütz ex H.Till & W.Till
Tyramine
0.002% fresh wt.
N-Methylytryamine
Less than 0.0001% fresh wt.
Hordenine
0.004% fresh wt.
Mescaline
Less than 0.0001% fresh wt.
N-Methylmescale
Less than 0.0001% fresh wt.
Anhalin
Less than 0.0001% fresh wt.
O-Methylanhaloamide
Less than 0.0001% fresh wt.
Pellotine
Less than 0.0001% fresh wt.
Anhaloamide
Less than 0.0001% fresh wt.
Štarha 2002

Gymnocalycium riojense Frič ex H.Till & W.Till
ssp. paucispinum Backeberg ex H.Till & W.Till
Tyramine
0.002% fresh wt.
N-Methylytryamine
Less than 0.0001% fresh wt.
Hordenine
0.004% fresh wt.
Mescaline
Less than 0.0001% fresh wt.
N-Methylmescale
Less than 0.0001% fresh wt.

27
Anhalinine
 less than 0.0001% fresh wt.
O-Methylanhalonidine
 less than 0.0001% fresh wt.
Pellotine
 less than 0.0001% fresh wt.
Anhalonidine
 less than 0.0001% fresh wt.

ŠtArHA 2002

Gymnocalycium riograndense CARDENAS
Tyramine (Between 0.0001-0.001%)
N-Methylytryamine (Less than 0.001%)
Hordenine (Less than 0.001%)
Mescline (Between 0.0001-0.001%)
N-Methylmescaline (Less than 0.001%)
Anhalinine (Less than 0.001%)
Anhalidine (Less than 0.001%)
Anhalonidine (Less than 0.001%)
Pellotine (Less than 0.001%)
Anhalonine (Less than 0.001%)
Pellotine (Less than 0.001%)
Lophophorine (Less than 0.001%)

ŠťArHA 1995a (% by fresh weight)

Gymnocalycium saglione (CELS) BRITTON & ROSE
Tyramine (0.027% dry wt.) NIETO et al. 1982.
 Also; Less than 0.001% [fresh wt] in ŠťArHA 1995a
Hordenine (0.008% dry wt.) NIETO et al. 1982.
 Also; Less than 0.001% [fresh wt] in ŠťArHA 1995a
Anhalidine (Less than 0.001%) ŠťArHA 1995a
Anhalonidine (Between 0.0001-0.001%) ŠťArHA 1995a
Pellotine (Less than 0.001%) ŠťArHA 1995a
Anhalonine (Less than 0.001%) ŠťArHA 1995a
Lophophorine (Less than 0.001%)
Candicine (0.041% dry wt.) NIETO et al. 1982.
 [3 unidentified bases reported; NIETO et al. 1982]

Gymnocalycium schickendantzii (WEBER) BRITTON & ROSE
Tyramine (approximately 0.001%)
N-Methylytryamine (between 0.0001-0.001%)
Hordenine (approximately 0.001%) ŠťArHA 1996; Also
 (%)? RUIZ et al. 1973
Anhalinine (between 0.0001-0.001%)
Anhalidine (less than 0.001%)
Anhalonidine (less than 0.001%)
Pellotine (less than 0.001%)
Anhalonine (less than 0.001%)
Lophophorine (less than 0.001%)
 All above by ŠťArHA 1996 (% by fresh weight)
Candicine (%)? RUIZ et al. 1973

Gymnocalycium stellatum SPEGAZZINI
Tyramine (Between 0.0001-0.001%)
N-Methylytryamine (Less than 0.0001%)
Hordenine (approximately 0.001%)
Mescline (Less than 0.0001%)
N-Methylmescaline (Between 0.0001-0.001%)
N,N-Dimethylmescaline (Less than 0.0001%)
Anhalinine (Between 0.0001-0.001%)
Anhalidine (Between 0.0001-0.001%)
O-Methylanhalonidine (Less than 0.0001%)
Anhalamidine (Less than 0.0001%)
Anhalonidine (Between 0.0001-0.001%)
Pellotine (Between 0.0001-0.001%)
Anhalonine (Between 0.0001-0.001%)
Lophophorine (Less than 0.0001%)
 ŠťArHA et al. 1997 (% by fresh weight)

According to Hunt 1999, Gymnocalycium triacanthum was lumped into Gymnocalycium riojense FrIČ ex H.TILL & W.TILL.
Hunt 2006 mentions that Till & Till recognized four subspecies within G. riojense with three varieties within each of three of the four.
Hunt 2006 also notes that G. riojense has more recently been absorbed into Gymnocalycium bodenbenderianum (Bgr.) Hill.
Cactus Chemistry: By Species

See also the synonym list of Ulrich Creutzberg 2010 and Creutzberg's great informational website.

Gymnocalycium uebelmannianum RAUSCH
- Tyramine (Between 0.0001-0.001%)
- N-Methyltyramine (Between 0.0001-0.001%)
- Hordenine (Between 0.0001-0.001%)
- **Mescaline** (Between 0.0001-0.001%)
- N-Methylmescaline (Less than 0.0001%)
- N,N-Dimethylmescaline (Less than 0.0001%)
- O-Methylanhalidine (Less than 0.0001%)
- Anhalidine (Less than 0.0001%)
- Anhalamine (Between 0.0001-0.001%)
- Anhalonidine (Between 0.0001-0.001%)
- Pellotine (Between 0.0001-0.001%)
- Anhalonine (Less than 0.0001%)
- Lophophorine (Less than 0.0001%)
- Štarha et al. 1997 (% by fresh weight)

Gymnocalycium valnicekianum Jajó
- Tyramine (Between 0.0001-0.001%)
- N-Methyltyramine (Less than 0.001%)
- Hordenine ("readily apparent" at around 0.001%)
- **Mescaline** (Less than 0.001%)
- Anhalinine (Less than 0.001%)
- Anhalonidine (Between 0.0001-0.001%)
- Pellotine (Less than 0.001%)
- Anhalonine (Less than 0.001%)
- Lophophorine (Less than 0.001%)
- Štarha 1995a (% by fresh weight)

Gymnocalycium vatteri Buining
- Mescaline (between 0.0001-0.001%)
- Tyramine (approximately 0.001%)
- N-Methyltyramine (between 0.0001-0.001%)
- Hordenine (approximately 0.001%)
- N-Methylmescaline (between 0.0001-0.001%)
- Anhalidine (approximately 0.001%)
- Anhalonidine (between 0.0001-0.001%)
- Pellotine (between 0.0001-0.001%)
- Anhalonine (less than 0.0001%)
- Lophophorine (less than 0.0001%)
- Štarha 1996 (% by fresh weight)

Haageocereus acranthus (VPL.) Backeb erg
- Flower contains Phyllocactin, Isophyllocactin, Betanin & Isobetanin. Piattelli & Imperato 1969
- Claim for the presence of mescaline is made by Caycho 1977 (page 91 as Cereus acranthus Vaupel) but no reference was cited and he does not include anything to support his assertion.
- See comment in Activity Notes.

Hamatocactus hamatocanthus (Mohlenpf.) Boro See as Ferocactus hamatocanthus

Hariota salicornioides DC
- Citric acid (5.2% in stem juice)
- Hegnauer 1964 cited Bergström 1934
- Reported to contain Betalains as pigments. Wohlpard & Mably 1968 cited Dreiding 1961

Harrisia adscendens (Gürke) Br. & R.
- “rabo de raposa”
- Unconfirmed report of caffeine (0.12-0.2%) in the seeds. Hegnauer 1964 & Mata & McLaughlin 1982 cite Freise 1935.
- As was mentioned elsewhere here, Freise’s reports of caffeine from cactus seeds have never been confirmed by anyone.

Hazeltonia columna-trajani (Karn.) Backeb erg
- See as Cephalocereus hoppenstedti

Helabravoa chende (Gosselin) Backeb erg
- See as Polaskia chende

Helianthocereus andalgalensis (Weber) Backeb erg
- See as Trichocereus andalgalensis
- Helianthocereus atacamensis (Prel.) Backeb erg
- See as Trichocereus atacamensis
- Helianthocereus huascha (Weber) Backeb erg
- See as Trichocereus huascha
- Helianthocereus pasacana (Weber) Backeb erg.
- See as Trichocereus pasacana
- Helianthocereus poco (Backeb erg) Backeb erg
- See as Trichocereus poco
- Helianthocereus speciosus (Caux.) Br. & R.
- See as Cereus speciosus

Hertrichocereus beneckei (Ehrenberg) Backeb erg
- See as Stenocereus beneckei

Homalocephala texensis Britton & Rose
- See as Echinocactus texensis

Hylocereus costaricensis (Weber) Britton & Rose
- Total betacyanin
- Phyllocactin was present at several times the betanin content.
- Total 0.39 ± 0.041 mg/g in fruit pulp.
- Betanin (17.9 ± 1.4% of total)
- Phyllocactin (63.9 ± 4.1% of total)
- Hylocerenin (6.4 ± 0.72% of total)
- Isobetanin (2.8 ± 0.32% of total)
- Isophyllocactin (7.4 ± 0.66% of total)
- Isohylocerenin (1.0 ± 0.15% of total)
- (% = relative percent of total peak in HPLC)
- Wybraniec & Mizrahi 2002

Hylocereus costaricensis X purpusii
- Fruit contained:
- Betanidin 5-O-β-sophoroside
- Betanin & Isobetanin
- 2’-Apiosyl-betanin & 2’-Apiosyl-isobetanin
- Phyllocactin & Isophyllocactin
Hylocereus hybrid 1 (Hylocereus undatus (whiteflesh) X sp. 487)
Total 0.28 ± 0.024 mg/g in fruit pulp.
Betanin (76.2 ± 5.7% of total)
Phyllocactin (12.0 ± 1.0% of total)
Hylocerenin (1.3 ± 0.12% of total)
Isobetanin (9.6 ± 0.79% of total)
Isophyllocactin (0.7 ± 0.09% of total)
Isohylocerenin (0.2 ± 0.03% of total)
(% = relative percent of total peak in HPLC)
Wybraniec et al. 2007 (hplc)

Hylocereus Hybrid 35 (Hylocereus sp. 487 X polyrhizus)
Total 0.33 ± 0.031 mg/g in fruit pulp.
Betanin (60.6 ± 4.2% of total)
Phyllocactin (19.5 ± 1.9% of total)
Hylocerenin (4.1 ± 0.34% of total)
Isobetanin (13.6 ± 1.3% of total)
Isophyllocactin (1.9 ± 0.17% of total)
Isophyllocactin (0.2 ± 0.04% of total)
(% = relative percent of total peak in HPLC)
Wybraniec & Mizrahi 2002

Hylocereus Hybrid 95 (Hylocereus polyrhizus X sp. 487)
Total 0.30 ± 0.023 mg/g in fruit pulp.
Betanin (57.9 ± 3.8% of total)
Phyllocactin (19.7 ± 1.5% of total)
Hylocerenin (3.6 ± 0.44% of total)
Isobetanin (11.3 ± 1.1% of total)
Isophyllocactin (6.4 ± 0.53% of total)
Isophyllocactin (1.0 ± 0.11% of total)
(% = relative percent of total peak in HPLC)
Wybraniec & Mizrahi 2002

Hylocereus ocamponis (SALM-DYCK) BR. & R.
Fruit contained:
Betanidin 5-O-β-sophoroside
γ-Aminobutyric acid
Betaxanthin
Indicaxanthin
Betanin & Isobetanin
2’-Apisoyl-betanin & 2’-Apisoyl-isobetanin
Phyllocactin & Isophyllocactin
4’-Malonyl-betanin & 4’-Malonyl-isobetanin
Hylocerenin & Isohylocerenin

Hylocereus polyrhizus (WEBER) BRITTON & ROSE
(now Hylocereus monacanthus (LEMAIRE) BRITTON & ROSE)
“pitaya” Commercial fruit in Israel.
Total 0.28 ± 0.019 mg/g in fruit pulp.
Betanin (18.9 ± 1.3% of total)
Phyllocactin (36.1 ± 2.2% of total)
Hylocerenin (11.7 ± 1.1% of total)
Isobetanin (7.2 ± 0.55% of total)
Isophyllocactin (19.2 ± 1.5% of total)
Isohylocerenin (5.8 ± 0.32% of total)
(% = relative percent of total peak in HPLC)
Wybraniec & Mizrahi 2002

Fruit pulp was reported to contain:
Betanin
Phyllocactin (= 6’-O-malonylbetanin)
Betanin 5-O-β-D-glucopyranoside (New compound named Hylocerenin)
Isobetanidin 5-O-β-D-glucopyranoside (New compound Isohylocerenin)
Isobetanin
Isophyllocactin
(Electrospray MS/MS, HPLC, and NMR)
Wybraniec et al. 2001

Hylocereus polyrhizus X undatus
Fruit contained:
Betanidin 5-O-β-sophoroside
Betanin & Isobetanin
2’-Apisoyl-betanin & 2’-Apisoyl-isobetanin
Phyllocactin & Isophyllocactin
4’-Malonyl-betanin & 4’-Malonyl-isobetanin
Hylocerenin & Isohylocerenin

Wybraniec et al. 2007 (hplc)
Cactus Chemistry: By Species

2’-Apiosyl-betanin & 2’-Apiosyl-isobetanin
Phyllocactin & Isophyllocactin
4’-Malonyl-betanin & 4’-Malonyl-isobetanin
Hylocerenin & Isohylocerenin
2’-Apiosyl-phyllocactin & 2’-Apiosyl-isophyllocactin

Peel contained the same and additionally
5”-O-E-Feruloyl-2’-apiosylbetanin
5”-O-E-Feruloyl-2’-apiosylisobetanin
5”-O-E-Sinapoyl-2’-apiosylbetanin
5”-O-E-Sinapoyl-2’-apiosylisobetanin
5”-O-E-Feruloyl-2’-apiosylphyllocactin
5”-O-E-Feruloyl-2’-apiosylisophyllocactin
Wybraniec et al. 2007 (hplc)

Hylocereus purpurii (Weingart) Britton & Rose

Lupeone & Lupeol (In a 4:1 ratio in the surface wax)
[Grown in Germany]
Wollenweber & Dörr 1995

Total 0.23 ± 0.018 mg/g in fruit pulp.
Betanin (66.9 ± 4.1% of total)
Phyllocactin (21.3 ± 1.4% of total)
Hylocerenin (2.0 ± 0.18% of total)
Isobetanin (7.2 ± 0.73% of total)
Isophyllocactin (2.4 ± 0.17% of total)
Isohylocerenin (0.1 ± 0.03% of total)
(% = relative percent of total peak in HPLC)
Wybraniec & Mizrahi 2002

Fruit contained:
Betanidin 5-O-β-sophoroside
Betanin & Isobetanin
2’-Apiosyl-betanin & 2’-Apiosyl-isobetanin
Phyllocactin & Isophyllocactin
4’-Malonyl-betanin & 4’-Malonyl-isobetanin
Hylocerenin & Isohylocerenin
2’-Apiosyl-phyllocactin & 2’-Apiosyl-isophyllocactin

Peel contained the same and additionally
5”-O-E-Feruloyl-2’-apiosylbetanin
5”-O-E-Feruloyl-2’-apiosylisobetanin
5”-O-E-Sinapoyl-2’-apiosylbetanin
5”-O-E-Sinapoyl-2’-apiosylisobetanin
5”-O-E-Feruloyl-2’-apiosylphyllocactin
5”-O-E-Feruloyl-2’-apiosylisophyllocactin
Wybraniec et al. 2007 (hplc)

Flowers reported to contain:
isorhamnetin, isorhamnetin 3-O-β-D-glucopyranoside
isorhamnetin 3-O-α-L-rhamopyranosyl-(1→6)-β-D-galactopyranoside.
isorhamnetin 3-O-β-D-rutinoside
kaempferol kaempferol 3-O-α-L-arabinofuranoside
kaempferol 3-O-β-D-galactopyranoside
kaempferol 3-O-α-L-rhamopyranosyl-(1→6)-β-D-galactopyranoside
kaempferol 3-O-β-D-rutinoside
quercetin quercetin 3-O-β-D-galactopyranoside
quercetin 3-O-β-D-glucopyranoside
Yi et al. 2011
Wu et al. 2011 added three glycosides they named - Undatusides A-C.
See comments in Activity Notes.

Hylocereus undatus (Haworth) Britton & Rose

“pitahaya” (Jalisco, Yucatan, Costa Rica, El Salvador, Puerto Rico), “pitahaya orejona” (Oaxaca), “tasajo” (Durango)
“juno”, “juco tapatío”, “chacoub”, “zacoub” (Yucatan)
“caliz” (Philippines) Standley 1924: 913

From leaves:
Cholesterol (traces)
24-β-Methylcholesterol (18.5% of total)
Stigmasterol (8.3% of total)
Sitosterol (73.2% of total)
Salt et al. 1987

Total 0.29 ± 0.027 mg/g in redfleshed fruit pulp.
Betanin (61.2 ± 4.3% of total)
Phyllocactin (28.0 ± 2.1% of total)
Hylocerenin (2.2 ± 0.17% of total)
Isobetanin (6.0 ± 0.51% of total)
Isophyllocactin (1.9 ± 0.17% of total)
Isohylocerenin (0.6 ± 0.07% of total)
(% = relative percent of total peak in HPLC)
Wybraniec & Mizrahi 2002

Hylocereus sp. 487

Total 0.29 ± 0.027 mg/g in redfleshed fruit pulp.
Betanin (61.2 ± 4.3% of total)
Phyllocactin (28.0 ± 2.1% of total)
Hylocerenin (2.2 ± 0.17% of total)
Isobetanin (6.0 ± 0.51% of total)
Isophyllocactin (1.9 ± 0.17% of total)
Isohylocerenin (0.6 ± 0.07% of total)
(% = relative percent of total peak in HPLC)
Wybraniec & Mizrahi 2002

Fruit contained:
Betanidin 5-O-β-sophoroside
Betanin & Isobetanin
2’-Apiosyl-betanin & 2’-Apiosyl-isobetanin
Phyllocactin & Isophyllocactin
4’-Malonyl-betanin & 4’-Malonyl-isobetanin
Hylocerenin & Isohylocerenin
2’-Apiosyl-phyllocactin & 2’-Apiosyl-isophyllocactin

Peel contained the same and additionally
5”-O-E-Feruloyl-2’-apiosylbetanin
5”-O-E-Feruloyl-2’-apiosylisobetanin
5”-O-E-Sinapoyl-2’-apiosylbetanin
5”-O-E-Sinapoyl-2’-apiosylisobetanin
5”-O-E-Feruloyl-2’-apiosylphyllocactin
5”-O-E-Feruloyl-2’-apiosylisophyllocactin
Wybraniec et al. 2007 (hplc)

Flowers reported to contain:
isorhamnetin, isorhamnetin 3-O-β-D-glucopyranoside
isorhamnetin 3-O-α-L-rhamopyranosyl-(1→6)-β-D-galactopyranoside.
isorhamnetin 3-O-β-D-rutinoside
kaempferol kaempferol 3-O-α-L-arabinofuranoside
kaempferol 3-O-β-D-galactopyranoside
kaempferol 3-O-α-L-rhamopyranosyl-(1→6)-β-D-galactopyranoside
kaempferol 3-O-β-D-rutinoside
quercetin quercetin 3-O-β-D-galactopyranoside
quercetin 3-O-β-D-glucopyranoside
Yi et al. 2011
Wu et al. 2011 added three glycosides they named - Undatusides A-C.
See comments in Activity Notes.
Islaya minor BACKEBERG (T)

Phenethylamine (no quantification)
Tyramine (no quantification)
N-Methyltyramine (no quantification)
Hordenine (no quantification)
3-Methoxytyramine (no quantification)
3,4-Dimethoxyphenethylamine (0.0038% dry wt.)
Mescaline (0.0017% dry wt.)
Corypalline (7-Hydroxy-6-methoxy-2-methyl-tetrahydrosquino-loline)
Pellotine (no quantification)
DOETSCH et al. 1980

Isolatocereus dumortieri (Scheidw.) BACKEBERG

See as *Lemaireocereus dumortieri*

Lemaireocereus aragonii (WEBER) BRITTON & ROSE

This is now *Stenocereus aragonii*
91.3% water by weight
Thought to contain an Amyrin mixture but never fully investigated due to insufficient material.
No ether soluble alkaloids.
DIERASSI et al. 1955b [Wild collected; Costa Rica]

Lemaireocereus beneckei (Ehrenberg) BERGER See as *Stenocereus beneckei*

Lemaireocereus chende (GOSSELIN) BRITTON & ROSE

See as *Polaskia chende*

Lemaireocereus chichipe (GOSSELIN) BRITTON & ROSE

See as *Polaskia chichipe*

Lemaireocereus deficiens (O. & DIETR.) BR. & R.

No saponins or terpenes. HEGNAUER 1964
Traces of unidentified terpene(s). DIERASSI 1957 cited unpublished observations by DIERASSI & MITSCHER

Lemaireocereus dumortieri BRITTON & ROSE

This is now *Stenocereus dumortieri*.
Dumortierigenin (A triterpene lactone) 0.21% by dry wt.
No detectable alkaloid.
DIERASSI et al. 1954b [Wild collected; Hildago, Mexico]

Two triterpene sapogenins,

Dumortierigenin
Pachanol D (new triterpene sapogenin with a new skeletal type. They named it pachanan)

KINOSHITA et al. 1998

Dumortierinoside A (a new triterpenoid saponin) i.e. Dumortierigenin 3-O-α-L-rhamnopyranosyl(1→2)-β-D-glucopyranosyl(1→2)-β-D-glucuronopyranoside

KINOSHITA et al. 2000

Three new triterpenoid saponins
(as *Isolatocereus dumortieri* BACKEBERG)
Dumortierinoside A methyl ester
Pachanoside I1 (aglycon was pachanol I: new pachanane-type triterpene skeleton.)
Pachanoside D1 (aglycon was pachanol D)

KAKUTA et al. 2012

Lemaireocereus eruca BRITTON & ROSE

See as *Stenocereus eruca*

Lemaireocereus euphorbioides (HAW.) WEED. See as *Neobuxbaumia euphorbioides*

Lemaireocereus griseus (HAWORTH) BRITTON & ROSE

“Cardon dato”, “Mexican organ pipe”, “dagger cactus”, “pitaya”, “pitayo de mayo”, “yato” (Netherland Antilles)
“No alkaloid”
Erythrodiol (0.58% dry wt.)
Longispinogenin (0.82% dry wt.)
Oleanolic acid (Isolated via acetate methyl ester as 2% dry wt.)
Betulin (Isolated via the acetate methyl ester as 4% dry wt.)
Unidentified lactone 0.12% [Thought identical with mate -rial from L. hystrix; i.e “hystrix lactone”]
DIERASSI et al. 1956a [Venezuela]

Lemaireocereus gummosus BRITTON & ROSE

See as *Machaerocereus gummosus*

Lemaireocereus hystrix (HAW.) BRITTON & ROSE

79.7% water by weight
Unidentified neutral triterpene lactone (“Hystrix lactone”); possibly isomeric withthurberogenin) [0.025% by dry wt]
Erythrodiol [0.067% by dry wt]
Oleanolic acid [(crude) 0.95% by dry wt]
Cactus Chemistry: By Species

Longispinogenin [0.17% by dry wt]
Betulinic acid (0.025% by dry wt) [isolated via its methyl ester]
No detectable alkaloid.

Djerassi & Lippman 1954 [Collected in Mona district, Jamaica] Noted an almost identical qualitative composition as L. longispinus
See Activity Endnote for a more recent curiosity.

Lemaireocereus laetus Britton & Rose
This is now Armatocereus laetus
82.3% water by weight
[Concluded it was almost devoid of alkaloids or triterpenes. (Unable to resolve and separate. No other soluble alkaloids. Much unidentified oily material (all neutral)]
Djerassi et al. 1955b [Wild collected; Peru].
This species needs an analysis. E. Wade Davis purportedly encountered it being used on a local basis as a T. pachanoi substitute
See Activity Notes for more comments.

Lemaireocereus longispinus Britton & Rose
This is now Stenocereus echilamii.
81.5% water by weight
Alkaloid devoid.
“Rich source” of triterpenoid glycosides.
Erythrodiol [0.33% by dry wt]
Oleanolic acid [crude 2.76% by dry wt]
Longispinogenin [0.4% by dry wt]
Djerassi et al. 1953c [Guatemala; cultivated specimen from Guatemala City]
See comments in the Activity Notes.

Lemaireocereus marginatus (DC) Berg. See as Pachycereus marginatus

Lemaireocereus matucanense.
Hunt 2006: “doubtfully distinct from Armatocereus laetus”
See additional comments in the Activity Notes.

Lemaireocereus mixtecensis (Purpus) Britton & Rose See as Polaskia chichipe

Lemaireocereus montanus Britton & Rose
This is now Stenocereus montanus.
“pithaya” [sp?]
Oleanolic acid
Queretaroic acid
β-Sitosterol
Djerassi 1957 cited unpublished observations by Djerassi & Kan

Lemaireocereus pruinosis (Otto) Britton & Rose
AKA “Pitayo”
89% water by weight. Djerassi et al. 1955b
Reported to show no detectable alkaloids in the screenings of Fong et al. 1972
Unidentified alkaloids detected by Brown et al. 1968
Oleanolic acid (an acidic triterpene; single component: 0.2% fresh w/ 1.8% dry)
Djerassi et al. 1955b [Cultivated: California]
First analyzed by L.H. Liu (unpublished observation from Djerassi’s lab) according to Djerassi & Lippman 1954.
This is now Stenocereus pruinosis.

Lemaireocereus queretaroensis (Weber) Safford
“pitahaya” Standley 1924: 900
Queretaroic acid (A dihydroxy triterpene acid) No isolation details included.
Djerassi et al. 1955a. Also in Djerassi et al. 1956b.
Oleanolic acid Djerassi et al. 1956b
See comments in Activity Notes.

Lemaireocereus quevedonis G. Ortega
This is now Stenocereus quevedonis.
87.2% water by weight
“hystrix lactone” (~0.4% yield dry wt)
Longispinogenin (1.42% yield dry wt.)
Oleanolic acid
Betulinic acid
Djerassi et al. 1956a [Collected near Acululco, Mexico]

Lemaireocereus thurberi (Engelmann) Britton & Rose
This is now Stenocereus thurberi.
“Pitahaya dulce” or “Organ pipe” or “Pitahaya” Standley 1924
84.9% water by weight Djerassi et al. 1953a [Kirscher 1972 reported 85%; Kirscher 1982 reported 77-80%]
No alkaloids- Based on negative Mayer test Djerassi et al. 1953a [Collected: Sonora, Mexico]
tlc examination showed the absence of alkaloids and the strong presence of triterpene glycosides: Kirscher 1982
Oleanolic acid (an acidic sapogenin) 1.8% dry wt. Djerassi et al. 1953a (Also reported in Kirscher 1977)
Thurberogenin (a neutral triterpenoid lactone: first reported occurrence) 0.46% dry wt. Djerassi et al. 1953a. (This paper was the first report of triterpenes in cacti) (It was also reported in Kirscher 1977 & in Jolad & Stee linkage 1969)
Queretaroic acid (No details) Gibson & Horak 1978 cited H.W. Kirscher (unpublished data); (Also reported in Kirscher 1972)
Thurberin (a pentacyclic triterpene; a lupenediol) Jolad & Stee linkage 1969 See comment under Calenduladiol below Betulin Jolad & Stee linkage 1969
Calenduladiol (A triterpene diol; Δ-20,30-lupen-3β,12β-diol) Shown to be identical with Thurberin. Kasprzyk et al. 1970 [Previously isolated from the Composite Calendula officinalis (Marigold) by Kasprzyk & Pyrek 1968]
Kirscher 1980 isolated the following (See also in Kirscher 1982):
Lupeol
Betulin
Betulinic aldehyde
Methyl betulinate
Calenduladiol
Longispinogenin
Lupenetriol (Lup-20(29)-en-3β,16β,28-triol)
Oleanolic aldehyde
Methyl oleanolate

(3β,6αSterol diols were isolated as 2.6% of dry wt. Kircher 1980)
The following 5 sterol diols were isolated and identified in Kircher & Bird 1982. (No concentrations included)
Cyclosterol (14α-Methyl-9,19-cyclo-5α-cholestan-3β,6α-diol)
Stenocereol (14α-Methyl-5α-cholesta-8,24-dien-3β,6α-diol)
Macdougallin (14α-Methyl-5α-cholesta-8-en-3β,6α-diol)
Thurberol (5α-Cholesta-8,14-dien-3β,6α-diol)
Peniocerol (5α-Cholest-8(9)-en-3β,6α-diol)

Lipids determined to compose 10-17% of the dry weight
(compromised of neutral Oleanene and Lupene mono-, di- and triols, 0.07% Phytosterols [Cholesterol, Campesterol and Sitosterol] and a large proportion of Dihydroxysterols.) Kircher & Bird 1982 cited Bird 1974.

Lipid content determined to be 11% by dry weight: Kircher 1982
See comments in Activity Notes.

Lemaireocereus treleasei Br. & R.
See as Stenocereus treleasei
Lemaireocereus weberi (Coult.) Br. & R.
See as Pachycereus weberi

Lecocereus bahiensis Br. & R.
Unconfirmed report of caffeine (0.10-0.35%) in seeds. Hegnauer 1964 & Mata & McLaughlin 1982 cited Freise 1935.

Leiocereus bahiensis Br. & R.
Unconfirmed report of caffeine (0.10-0.35%) in seeds. Hegnauer 1964 & Mata & McLaughlin 1982 cited Freise 1935.

Lepidocoryphantha macromeris (Engelmann) Backeberg
See as Coryphantha macromeris
Lepidocoryphantha runyonii (Britton & Rose) Backeberg
See as Coryphantha macromeris var. runyonii

Leuehtenbergia principis Hooker
Reported to contain unidentified alkaloid(s). Chalet 1980a cited Dominguez et al. 1969
See comments in Activity Notes.

Lobivia allegriana Backeberg
Hordenine (trace) Follas et al. 1977.
N-Methyltyramine (trace) Follas et al. 1977.
Tyramine (trace) Follas et al. 1977.

Lobivia andalgalensis (Weber) Br. & R. IS NOT Trichocereus andalgalensis Probably is synonymous with Trichocereus huascha See Ritter 1980.

Lobivia aurea (Britton & Rose) Backeberg
Hordenine (trace) Follas et al. 1977.
N-Methyltyramine (trace) Follas et al. 1977.
Tyramine (trace) Follas et al. 1977.

Lobivia backebergii (Werdermann) Backeberg
Hordenine (0.011% dry wt) Follas et al. 1977.
N-Methyltyramine (0.0008% dry wt) Follas et al. 1977.
Tyramine (trace) Follas et al. 1977.

Lobivia binghamiana Backeberg
Hordenine (0.004% dry wt) Follas et al. 1977.
N-Methyltyramine (0.0003% dry wt) Follas et al. 1977.
Tyramine (trace) Follas et al. 1977.

Lobivia chlorogona Wessn.
Reported to contain Betalains as pigments. Wohlfart & Marby 1968 cited Dreiding 1961

Lobivia fumatimensis (Speg.) Br. & R.
Reported to contain Betalains as pigments. Wohlfart & Marby 1968 cited Dreiding 1961

Lobivia formosa (Pfeiffer) Dodds
Candicine (0.268% [column chromatography] & 0.242% [via precipitation of picrate] All dry wt) Nieto et al. 1982

Lobivia huashua (Weber) W.T. Marshall = Lobivia huascha
Lobivia huascha (Weber) W.T. Marshall See as Helianthocereus huascha

Lobivia pentlandii (Hooker) Britton & Rose
Hordenine (0.012% dry wt) Follas et al. 1977.
N-Methyltyramine (trace) Follas et al. 1977.
Tyramine (trace) Follas et al. 1977.

Lophocereus australis (K.Brandegee) Borg
[Considered a local variant of L. schottii by some; Lophocereus schottii var. Australis]
92% water (inaccurate due to prior removal of core)
Pilocereine [(crude) 0.5% by dry wt; 0.27% yield after purification] Dierassi et al. 1954c
Lophenol (a sterol) present both free and esterified. Dierassi 1957 cited unpublished analysis by Dierassi, Marfey & Liu

Lophocereus gatesii M.E. Jones
91% water by weight
Pilocereine (0.5% by dry wt)
[Unidentified alkaloids present] Dierassi et al. 1954c
[Agrell 1969b also appears listed as a reference but only mentions pilocereine. Did not analyze this species.]
Lophenol (a sterol) present both free and esterified. Dierassi 1957 cited unpublished analysis by Dierassi, Marfey & Liu

Lophocereus mieckleyanus (Wgt.) Backeberg
See as Lophocereus schottii forma mieckleyanus
Lophocereus sargentianus (Orcutt) Britton & Rose
See as Lophocereus schottii

http://www.largelyaccurateinformationmedia.com
Cactus Chemistry: By Species

Lophocereus schottii (Engelmann) Britton & Rose

"sinita", "senita", "cind", "zina" (Sonora) "garambullo", "hombre viejo", "cabeza de viejo", "pitahaya barrona" (Baja) Stanely 1924

91.29% & 92.25% water by weight reported by Heyl 1901.

(Kircher 1969 found it to range from 80-90%; Kircher 1982 listed it with 81% water by weight)

3.7% total alkaloid isolated according to Hegnauer 1964

[See Note A]

Pilocereine (novel cactus alkaloid) Dierassi et al. 1958c);

(0.5% yield by dry wt. Dierassi et al. 1953b) (Observed in tlc West et al. 1975); (Noted as present: O'Donovan & Horan 1968 & 1969 & O'Donovan et al. 1971); (Not extracted but pharmacologically evaluated by Powell & Chen 1956) Wani et al. 1980 recovered 0.016% [Heyl 190 isolated 5.8% (amorphous) & named Pilocereine.]

Lophocereine 0.19% by dry wt. Dierassi et al. 1958c;

Pilocereine 1.456% by dry wt. Dierassi et al. 1958c.

Unidentified alkaloids (Observed in tlc West et al. 1975)

[Lophocereine was reported by Wani et al. 1980 at 0.004% dry weight but it is believed to be an artifact]

[Agerbelle 1969b is cited as a reference but only mentions a previous report of pilocereine and lophocereine and did not analyze this species. Lundstrom 1971 is also cited; he mentions lophocereine but did not analyze this species. Dinglerdissen & McLaughlin 1973b also appears listed as a reference but does not mention this species]

[Unger et al. 1980 reported the presence of two alkaloids using MIKEs. Both were presented as dimethoxylated THIQs. They suggested the identities as N-Methylheliamine and another THIQ that was either isomeric or identical with Heliamine, Lemair-eocereine or Uberine. This report needs confirmation. Unless MIKEs fails entirely for the 1-Isobutyl-substituted THIQs, their results stand in direct and complete conflict with the rest of the work published for this species.]

Reported to be devoid of glycosides in Dierassi et al. 1958a n-Octyl-alcohol (0.9%) Dierassi et al. 1958b

Lupeol (0.02% via its acetate) Dierassi et al. 1958b [Was also reported in Kircher 1969 & Campbell & Kircher 1980. Noted to be isolated from neutral nonglycosidic fraction Dierassi 1957 cited unpublished analysis by Dierassi, Mills, Krakower, Liu & Lemin]

Lophenol (a neutral alcohol; 4α-Methyl-Δ7-cholenen-3β-ol) [AKA 4α-Methyl-5α-cholen-7-en-3β-ol]) (0.23% dry wt.) Dierassi et al. 1958b [Also isolated in Dierassi et al. 1958a & Kircher 1969 (the latter finding it higher in older stems and in the cortex than in the epidermis) & reported in Kircher & Heed 1970 & Campbell & Kircher 1980. Present both free and esterified Dierassi 1957 cited unpublished analysis by Dierassi, Mills, Krakower, Liu & Lemin]

Schottenol (Δ7-Ergosten-3β-ol) [AKA Δ7-Stigmasten-3β-ol and 5α-Stigmast-7-en-3β-ol]) (0.13%) Dierassi et al. 1958b [Also reported by Kircher 1969 & Kircher & Heed 1970 & Campbell & Kircher 1980]

In addition, the following sterols were later reported: Lathosterol (5α-Cholesten-7-en-3β-ol)

5α-Campesten-7-en-3β-ol
α-Spinasterol (5α-Stigmast-7,22E-dien-3β-ol)
5α-Cholesta-8,14-dien-3β-ol [First isolation from plants]
Locereol (4α-Methylcholesta-8,14-dien-3β-ol) [First isolation from plants]
24-Methyleneophenol (4α-Methyl-5α-ergosta-7,24(28)-dien-3β-ol)
Campbell & Kircher 1980

Palmitic acid, Oleic acid, Linoleic acid and Linolenic acid were the main fatty acids in all specimens tested. Kircher 1969

Lophocereus schottii notes:

A: There appears to be a typo in one of these papers. Dierassi et al. 1953b determined that the majority of this was in the green epidermis (6.7% crude alkaloid); a minor portion in the cortex (1.1% crude alkaloid) and almost no alkaloid in the core & pith (0.2% crude alkaloid)

See comment in Activity Notes.

Lophocereus schottii var. schottii

and

Lophocereus schottii var. tenuiss

Determined to have no significant differences in their overall phytochemistry.

[Diffences however were seen when comparing mature stems with young stems on a single plant or when comparing the non-alkaloidal chemistry of the cortex and epidermis.]

The young stems contained higher proportions of phenolic alkaloids despite having lower alkaloid levels overall.

L. schottii variety schottii tenuiss

Phenolic alkaloid fraction: % are dry weight

Young stem 0.4% 0.5%

Mature stem 0.7% 0.6%

Total alkaloid fraction:

Young stem 1.1% 1.2%

Mature stem 8.7% 9.1%

Kircher 1969

Tlc examination showed the strong presence of alkaloids and the absence of triterpene glycosides.

In general, younger stems contained more Linoleic acid than mature stems.

Lipid content determined to be 6-7% by dry weight: Kircher 1982

Lophocereus schottii forma mieckleyanus G. Lindsey

Pilocereine (0.005% yield by dry wt)

Pilocereine (Observed)

Unidentified alkaloids

West et al. 1975 [West et al. commented that this form proved to be quantitatively the richest in alkaloids but this claim is directly in conflict with their experimental details]

Lophocereus schottii (Engel.) Br. & R. forma monstrous Gates

AKA “Totem pole cactus”

Pilocereine (0.01% yield by dry wt)
Lophocereine (Observed)
Unidentified alkaloids
West et al. 1975

Lophocereus schottii (Engel.) Br. & R. var. Australis (K.Brand.)
Boro. See as Lophocereus australis

Lophophora diffusa (Croizat) H.Bravo

0.9% total alkaloid (whole plants; dry wt) 98% phenolic.

Bruhn & Holmstedt 1974

Tyramine 0.1% of total alkaloid: ŠtarHA 1997 [Cultivated
material: GR 1086]

N-Methyltyramine 0.1% of total alkaloid: ŠtarHA 1997
Hordenine (trace) Bruhn & Holmstedt 1974; 0.5% of total
alkaloid [from ŠtarHA 1997]; (In contrast to Todd 1969
who had not observed it in tlc.)

Mescaline (As traces or absent entirely.) Traces in tops
& roots (tlc) Todd 1969; Minor base: Habermann 1977,
1978a & 1978b (from Anderson 1980 & ŠtarHA nd);
0.018% (± 0.012) Habermann 1978a (from ŠtarHA 1997);
0.003% by dry weight (isolated); Siniscalco 1983
[See Note A]; 1.2% of total alkaloid: ŠtarHA 1997; (Not
observed by Bruhn & Holmstedt 1974.)

N-Methylmescaline (traces) Bruhn & Holmstedt 1974;
0.1% of total alkaloid: ŠtarHA 1997

Anhalidine (Trace of the total alkaloid content) ŠtarHA &
Kuchyna 1996; 0.1% of total alkaloid: ŠtarHA 1997

Hordenine (0.37% [± 0.05] of the total alkaloid content)
ŠtarHA & Kuchyna 1996; 0.4% of total alkaloid; ŠtarHA
1997

Anhalinine 0.6% of total alkaloid [from ŠtarHA 1997] [Not
detected; Todd 1969 [Wild material: collected Queretaro,
Mexico])

O-Methylanhalidine 0.7% of total alkaloid: ŠarHA 1997
[See Note B]

Anhalamine (no quantification [tlc]- in tops only, not in
roots) Todd 1969; 5% of total alkaloid. ŠtarHA 1997

Anhalidine (trace) Bruhn & Holmstedt 1974; 0.1% of total
alkaloid. ŠarHA 1997

Anhalonidine (trace) Bruhn & Holmstedt 1974; (tlc showed
in tops & roots: Todd 1969); 3.8% of total alkaloid.
ŠarHA 1997

Anhalonine 0.1% of total alkaloid. ŠarHA 1997 (Not
detected; Todd 1969)

Lophophorine (no quantification, [tlc] present in tops &
roots: Todd 1969); 0.1% of total alkaloid ŠarHA 1997

O-Methylpellotine (trace) Bruhn & Agurell 1975.
Pellotine (0.75-0.89% [fresh wt]) Heffter 1894b. [Also
observed as the major base by Habermann 1977, 1978a
& 1978b (from Anderson 1980 & ŠarHA nd)]; 2.105% (±
0.108) Habermann 1978a (from ŠarHA 1997); (Todd 1969
reported it to be the major alkaloid but did not quantify);
86.2% of total alkaloid: ŠarHA 1997

[Ed.: Please note that ŠarHA (in Grym) 1997 cited ŠarHA &
Kuchyna 1996 but some included entries are not in ŠarHA &
Kuchyna 1996. They may refer to otherwise unpublished material
but we lack details; most likely due to our lack of understanding
of Czechoslovakian.]

Glucaric acid (tlc by Kringstad & Nordal 1975)
Quinic acid (tlc, glc & gc-ms by Kringstad & Nordal 1975)

Lophophora diffusa Notes:

A: Analyzed as L. echinata. This is an incorrect designation for L.
diffusa that is not uncommon, but unfortunately, encountered in
European collections.

This began when Croizat described L. echinata as being from
Texas and then went on to describe L. diffusa as L. echinata var.
diffusa.

L. echinata (L. williamsii var. echinata) is most commonly used for
the greyish, larger & higher alkaloid material found in southern
Trans Pecos Texas and southward into Coahuila. It is probably
synonymous with the Coahuilan material NOW being called L.
decipiens by some European cactophiles.

B: Possible error on our part. ŠarHA 1997 lists this as
O-Methylanhalinine which I assume is a typo (as a compound
cannot exist with this name)

Lophophora diffusa var. koehresii Riha

[See Note A]

(Wild-collected in Mexico) Sample was 2.4 gm dry (Total
alkaloid concentration not included)

Tyramine (0.04% [± 0.01] of the total alkaloid content) ŠarHA &
Kuchyna 1996; [0.1% of total alkaloid: ŠarHA 1997]

N-Methyltyramine (Trace of the total alkaloid content) ŠarHA &
Kuchyna 1996; [0.1% of total alkaloid: ŠarHA 1997]

Hordenine (0.37% [± 0.05] of the total alkaloid content)
ŠarHA & Kuchyna 1996; [0.4% of total alkaloid; ŠarHA
1997]

N-Methyl-3,4-dimethoxyphenethylamine (0.01% [± 0.01]
of the total alkaloid content) ŠarHA & Kuchyna 1996

Mescaline (1.32% [± 0.35] of the total alkaloid content)
ŠarHA & Kuchyna 1996; [1.3% of total alkaloid: ŠarHA
1997]

N-Methylmescaline (0.07% [± 0.02] of the total alkaloid
content) ŠarHA & Kuchyna 1996; [0.1% of total alkaloid:
ŠarHA 1997]

3,5-Dimethoxy-4-hydroxyphenethylamine (0.10% [± 0.02]
of the total alkaloid content) ŠarHA & Kuchyna 1996

O-Methylanhalidine (0.07% [± 0.01] of the total alkaloid
content) ŠarHA & Kuchyna 1996; [? 0.8% of total alk-
aloid: ŠarHA 1997] [See Note B]

Anhalamine (0.44% [± 0.07] of the total alkaloid content)
ŠarHA & Kuchyna 1996; [0.5% of total alkaloid: ŠarHA
1997] [See Note C]

O-Methylpellotine (Trace of the total alkaloid content) ŠarHA &
Kuchyna 1996; [0.1% of total alkaloid: ŠarHA 1997]

Anhalidine (Trace of the total alkaloid content) ŠarHA &
Kuchyna 1996; [0.1% of total alkaloid: ŠarHA 1997]

Anhalamine (4.74% [± 0.32] of the total alkaloid content)
ŠarHA & Kuchyna 1996; [4.7% of total alkaloid: ŠarHA
1997]

Anhalonidine (3.45% [± 0.82] of the total alkaloid content)
ŠarHA & Kuchyna 1996; [3.5% of total alkaloid: ŠarHA
1997]

Pellotine (88.39% [± 2.12] of the total alkaloid content)
ŠarHA & Kuchyna 1996; [88.4% of total alkaloid: ŠarHA
1997]
Cactus Chemistry: By Species

Anhalonidine (0.12% \pm 0.02% of the total alkaloid content) ŠTARHA & KUCHYNA 1996; [0.1% of total alkaloid: ŠTARHA 1997]
Lophophorine (Trace of the total alkaloid content) ŠTARHA & KUCHYNA 1996; [0.1% of total alkaloid: ŠTARHA 1997]

L. diffusa var KOEHRSEII NOTES:
A: Also described as Lophophora williamsii var. koehresii (Riha) GRYM. See GRYM 1997.
B: Possible error. ŠTARHA 1997 lists as O-Methylanhalinine See comment in earlier footnote
C: In ŠTARHA & KUCHYNA 1996 this appears as a typo (anhalamine is listed twice). We based our assignment on a comparison of the gc value with those in Starha’s other papers.

Lophophora friciii HABERMANN

“Ginkangyoku”

[See Note A]
Pellotine (Major) HABERMANN 1978a (From ŠTARHA n.d.); ANDERSON 1980 cited HABERMANN 1977 & HABERMANN 1978a; [1.819% (\pm 0.212) (from ŠTARHA 1997 citing HABERMANN 1978a)]; (65.2% & 65.5% of total alkaloid [See Note B] [ŠTARHA 1997 cited ŠTARHA & KUCHYNA 1996])
Mescaline (Minor) HABERMANN 1978a (From ŠTARHA n.d.); ANDERSON 1980 cited HABERMANN 1977 & HABERMANN 1978a; [0.014% (\pm 0.009) (from ŠTARHA 1997 citing HABERMANN 1978a)]; (0.9% & 1.1% of total alkaloid ŠTARHA 1997).
Tyramine (0.1% & 0.1% of total alkaloid ŠTARHA 1997)
N-Methyltyramine (0.1% & 0.1% of total alkaloid ŠTARHA 1997)
Hordenine (0.3% & 0.4% of total alkaloid ŠTARHA 1997)
N-Methylnescaline (0.1% & 0.1% of total alkaloid ŠTARHA 1997)
Anhalinine (2.7% & 2.2% of total alkaloid ŠTARHA 1997)
O-Methylanhalidine (? (2.3% & 1.9% of total alkaloid ŠTARHA 1997) [See Note C]
Anhalidine (1.0% & 1.0% of total alkaloid ŠTARHA 1997)
Anhalamine (0.2% & 0.7% of total alkaloid ŠTARHA 1997)
Anhalonidine (25.9% & 24.9% of total alkaloid ŠTARHA 1997)
Anhalonidine (0.2% & 0.2% of total alkaloid ŠTARHA 1997)
Lophophorine (0.1% & 0.1% of total alkaloid ŠTARHA 1997) Ed.?: Please note that ŠTARHA (in GRYM) 1997 only cited ŠTARHA & KUCHYNA 1996 but some entries are not in our copy of ŠTARHA & KUCHYNA 1996. They may refer to otherwise unpublished material but we lack details. The values refer to work performed with material cultivated in Germany.

L. journdaniana Notes:
A: Published in HABERMANN 1975a & 1975b
The use of the specific name “journdaniana” is potentially misleading (and should be rejected as invalid) as it was previously used, including for horticultural offerings (initially ‘journdaniana’ appeared as a specific name in an old Pierre Rebut catalog) and had already been published in several vague and unclear accounts (as Anhalonium journdanianum Lewin, Echinocactus journdaniana Rebut ex Maass, Echinocactus lewini (H. SCHUM var. journdaniana Michaelis & Lophophora journdaniana Kreuz)
None of these can be linked with Habermann’s with any degree of certainty.
Habermann’s assignment referred to a rose-violet flower color appearing in European imported & cultivated plants (arising from within lots of material identified as L. williamsii), while his actual description (and type) was based on a Mexican plant he purchased from K.H. Uhlig (as L. williamsii) that he felt looked like the same material as was already in European collections, and thus this name, as Habermann described it, cannot be reliably extrapolated to include any of the earlier material referred to by the same name.

Lophophora journdaniana HABERMANN

[Note A]
Mescaline (Major) HABERMANN 1978a (From ŠTARHA n.d.); ANDERSON 1980 cited HABERMANN 1977 & HABERMANN 1978a; [0.690% (\pm 0.105) ŠTARHA 1997 cited HABERMANN 1978a (See Note B)]; (31% of total alkaloid ŠTARHA 1997); See comments in Activity Notes.
Pellotine (Minor) HABERMANN 1978a (From ŠTARHA n.d.); ANDERSON 1980 cited HABERMANN 1977 & HABERMANN 1978a; [0.710% (\pm 0.089) HABERMANN 1978a (from ŠTARHA 1997) (See Note C)]; (17.8% of total alkaloid ŠTARHA 1997)
Tyramine (0.6% of total alkaloid ŠTARHA 1997)
N-Methyltyramine (0.5% of total alkaloid ŠTARHA 1997)
Hordenine (2.9% of total alkaloid ŠTARHA 1997)
N-Methylnescaline (3.2% of total alkaloid ŠTARHA 1997)
Anhalinine (0.6% of total alkaloid ŠTARHA 1997)
O-Methylanhalidine (?) (0.8% of total alkaloid ŠTARHA 1997) [See Note D]
Anhalidine (3.1% of total alkaloid ŠTARHA 1997)
Anhalamine (1.7% of total alkaloid ŠTARHA 1997)
Anhalonidine (20.1% of total alkaloid ŠTARHA 1997)
Anhalonidine (1.1% of total alkaloid ŠTARHA 1997)
Lophophorine (1.4% of total alkaloid ŠTARHA 1997)
Ed.?: Please note that ŠTARHA 1997 only cited ŠTARHA & KUCHYNA 1996 but some entries are not in our copy of ŠTARHA & KUCHYNA 1996. They may refer to otherwise unpublished research but we lack details. The values refer to work performed with material cultivated in Germany.
Lophophora journaniana is not widely accepted and was rejected by Anderson. See Anderson 1980. The presence of readily visible persistent spines in the available horticultural material may support a separate varietal status or at least indicates this “species” needs additional investigation and, if specific status is warranted, a legitimate name assignment.

B: There appears to be some discrepancy as this is not the major alkaloid with regards to the pelletine present.

C: There appears to be some discrepancy as this is not a minor alkaloid with regards to the mescaline present.

D: Possible error. ŠtARHA 1997 lists this as O-Methylanhalinine.

See comment in earlier footnote.

Lophophora lutea is another invalid name. It was given by Croizat to material that was said to be yellow in flower, hair and body color. Presently it is used for the yellow flowering specimens of L. diffusa as are known in cultivation in European collections. See more comments in Sacred Cacti Part A

Lophophora sp. var. Viesca (Vieska), Mex.
(Wild-collected in Mexico) Sample was 7.6 gm dry (Total alkaloid concentration not included)

Tyramine (0.03% [± 0.01] of the total alkaloid content) ŠTARHA & KUCHYNA 1996; (0.1% of total alkaloid ŠTARHA 1997)

N-Methyltyramine (0.08% [± 0.01] of the total alkaloid content) ŠTARHA & KUCHYNA 1996; (0.1% of total alkaloid ŠTARHA 1997)

Hordenine (6.47% [± 0.29] of the total alkaloid content) ŠTARHA & KUCHYNA 1996; (6.5% of total alkaloid ŠTARHA 1997)

N,N-Dimethyl-3-methoxy-4-hydroxyphenethylamine (0.02% [± 0.01] of total alkaloid content) ŠTARHA & KUCHYNA 1996

N-Methyl-3,4-dimethoxypheynethylamine (0.04% [± 0.01] of the total alkaloid content) ŠTARHA & KUCHYNA 1996; (0.1% of total alkaloid ŠTARHA 1997)

Mescaline (1.01% [± 0.25] of total alkaloid content) ŠTARHA & KUCHYNA 1996; (1.0% of total alkaloid ŠTARHA 1997)

N-Methylmescaline (0.09% [± 0.01] of the total alkaloid content) ŠTARHA & KUCHYNA 1996; (0.1% of total alkaloid ŠTARHA 1997)

3,5-Dimethoxy-4-hydroxyphenethylamine (0.77% [± 0.09] of the total alkaloid content) ŠTARHA & KUCHYNA 1996

O-Methylmescaline (0.07% [± 0.01] of the total alkaloid content) ŠTARHA & KUCHYNA 1996 [See Note A]; (0.9% of total alkaloid ŠTARHA 1997)

Anhalaline (0.45% [± 0.06] of the total alkaloid content) ŠTARHA & KUCHYNA 1996; (0.5% of total alkaloid ŠTARHA 1997) [See Note B]

O-Methylpellotine (Trace of the total alkaloid content) ŠTARHA & KUCHYNA 1996

Anhalaline (0.14% [± 0.01] of the total alkaloid content) ŠTARHA & KUCHYNA 1996; (0.1% of total alkaloid ŠTARHA 1997)

Anhalamine (6.94% [± 0.30] of the total alkaloid content) ŠTARHA & KUCHYNA 1996; (6.9% of total alkaloid ŠTARHA 1997)

Anhalonidine (5.32% [± 0.32] of the total alkaloid content) ŠTARHA & KUCHYNA 1996; (5.2% of total alkaloid ŠTARHA 1997)

Pellotine (76.28% ± 1.92) of the total alkaloid content) ŠTARHA & KUCHYNA 1996; (76.3% of total alkaloid ŠTARHA 1997)

Anhalamine (0.10% [± 0.02] of the total alkaloid content) ŠTARHA & KUCHYNA 1996; (0.1% of total alkaloid ŠTARHA 1997)

Lophorine (0.08% [± 0.02] of the total alkaloid content) ŠTARHA & KUCHYNA 1996; (0.1% of total alkaloid ŠTARHA 1997)

A: Possible error. ŠTARHA 1997 lists this as O-Methylanhalinine.

See comment in earlier footnote.

B: In ŠTARHA & KUCHYNA 1996 this appears as a typo (anhalamine is listed twice). The listed identity was inferred from their GC.

Lophophora williamsii (Lemaire) Coulter

AKA Peyote and many other names

89% water by weight.

Total alkaloid reported: 8.41% in dried “buttons”; 0.47% in fresh whole plants; 0.2% in fresh roots and 0.93% in fresh tops.

BRUHN & HOLMSTEDT 1974.

82.5% of the alkaloid total in tops and 75.2% in roots: ANONYMOUS 1959 cited ROUBIER 1927a.

1,2-Dimethyl-6,7-dimethoxy-8-hydroxy-3,4-dihydroisoquinolinium inner salt (0.0008% fresh wt.)

2-Methyl-6,7-dimethoxy-8-hydroxy-3,4-dihydroisoquinolinium inner salt (0.001% fresh wt.)

1-Methyl-6,7-dimethoxy-8-hydroxy-3,4-dihydroisoquinoline (0.0001% fresh weight)

6,7-dimethoxy-8-hydroxy-3,4-dihydroisoquinoline (0.0008% fresh weight)

FUJITA et al. 1972 (above 4 as L. williamsii var. caesitosa).

3,4-Dihydroxy-5-methoxyphenethylamine (trace) LUNDSTRÖM 1971a

LUNDSTRÖM & AGURELL 1968 and LUNDSTRÖM 1971a. [ŠTARHA nd CF HABERMANN 1978b]

[3,4,5-trimethoxyphenylalanine (i.e. 3,4,5-Trimethoxyphenethylyglycine) reported in error (Used only as reference material- Did not observe in plant). See SETHI et al. 1973. Please note that N-3,4,5-Trimethoxyphenethyl]-glycine and N-[3,4,5-Trimethoxyphenethyl]-alanine are synonyms for Mescaloxyl acid and Mescaluric acid (respectively);

See KAPADA & HUSSAIN 1972a.)

3-Hydroxy-4,5-dimethoxyphenethylamine [AKA 5-OH-3,4,diMeO-PEA or 3-Dimethoxymescaline] (5% of total alkaloid AGURELL & LUNDSTRÖM 1968); (1-5% of total alkaloid content in fresh material: LUNDSTRÖM & AGURELL 1971b)

Also (identified) by KAPADA et al. 1969 and AGURELL & LUNDSTRÖM 1968

3-Methoxytyramine (trace) LUNDSTRÖM 1971a
Anhalamine (0.1-0.7% dry wt. has been reported) Späth & Becke 1935b and Lundström 1971b. [Also in Habermann 1974a (from Štárha nd)] [8% of total alkaloid content: Lundström 1971b].

Anhalidine (trace) (0.001% dry wt.) Späth & Becke 1935b; (0.16% dry wt. i.e. 2% of 8% total alkaloid content) Lundström 1971b. Anhalonidine (1.12% dry wt.) [14% of total alkaloid content: Lundström 1971b] Štárha nd cf. Habermann 1974a. Anhalonidine (0.24% dry wt.) [3% of total alkaloid content: Lundström 1971b].

Anhaloline (0.003% dry wt.) Kąpadia et al. 1968. [Candicine. (Presence is unconfirmed and questionable. Detection by Mclaughlin & Paul 1966 relied entirely on tlc. All other workers were unable to detect it. Ex.: See Kąpadia et al. 1968 & Davis et al. 1983).]

Choline (0.005% dry wt.) Kąpadia et al. 1968. Dopamine (trace) Lundström 1971a.

Epipine (trace) Lundström 1971a.

Hordenine (0.6-0.7% dry wt.) Lundström 1971b; (0.008% dry wt.) Mclaughlin & Paul 1966; Todd 1969 found it only in roots (tlc). [Also in Habermann 1978b (from Štárha nd)].

[8% of total alkaloid content: Lundström 1971b]

Isonhalidine (trace) Lundström 1972.

Isoanhalidine (trace) Lundström 1972 & 1971b.

Isoanhalonidine (trace) Lundström 1972.

Isopellotine (0.04% dry weight) [0.5% of total alkaloid content: Lundström 1971b].

Lophorphorine (0.4% dry wt.) Lundström 1971b; (0.5% dry wt.) Heffter 1898b. [Also in Habermann 1974a (from Štárha nd)] [5% of total alkaloid content: Lundström 1971b]. (Appeared to be the major alkaloid in 2 varieties of summer collected plants: Todd 1969).

Lophotine (0.0002% dry weight) Kąpadia et al. 1968. Mescaline (0.10-0.9-6.0-%) [dry wt. has been reported [See Note A)] [Anonymous 1959, Heffter 1896a, Lundström 1971b, Martin & Alexander 1968 & Siniscalco 1983]; Anderson 1980 cited Kelsey 1959 (0.9%), Bergman 1971 (1.5%), Fischer 1958 (3%), Heffter 1896a (4.6-5.6 %[-6.3%]);

2.4-2.7 % dry (~400 mg per 16 grams of dried cactus) Ott 1993 citing Bruhn & Holmstedt 1974 and Lundström 1971b.

[Crosby & McLaughlin 1973 stated peyote can reach 6% mescaline but rarely exceeds 1% (dry wt.)]; [Tops>> Roots; Todd 1969 (See Note B)].

Siniscalco 1983 reported the isolation of 0.10% (well irrigated), 0.93% (grafted) and up to 2.74% dry weight (after 6 months of dry conditions) from plants cultivated in Italy; 0.1 to 0.2% by fresh weight is common; Friends with extraction experience found fresh Texas plants to average 0.2% mescaline content during 1970s; 75-125 mg of HCl was recovered from 70-140 gm plants greenhouse grown in northern Europe. Lundström & Agurell 1971b (This approaches 0.1% by fresh weight).

[Also in Habermann 1978a & 1978b (from Štárha nd)].

[30% of total alkaloid content: Lundström 1971b]; 0.255% by fresh weight (2.55 mg/gm fresh: average of two specimens; estimated using HPLC) They also reported an average of 1.75% by dry weight. (Ed.: Note the obvious discrepancy) [Container grown in Italy] Gennaro et al. 1996;

[As L. williamsii var. typica Cron & HABermAnn 0.709% (± 0.032) dry wt. Habermann 1978a (from Štárha 1997)].

Starr Co.: 2.77%; Jim Hogg Co.: 3.2%; Val Verde Co.: 3.5%; Presidio Co.: 3.52%. (Averaged % by dry weight.) Hulsey et al. 2011.

3.80% mature crowns, 2.01% small regrowth crowns. (Jim Hogg Co. - Averaged % by dry weight.) Kalam et al. 2012 & 2013.

1.82-5.50% in crown tissue, 0.125-0.376% in subterranean stem tissue, and 0.0147-0.0520% in root tissue. (Starr Co.; Analyzed individually. All % by dry wt.). Kleen et al. 2013.

N,N-Dimethyl-3-hydroxy-4,5-dimethoxyphenethylamine (0.04% dry weight i.e. 0.5% of 8% total alkaloid content) Lundström 1971c. [0.5% of total alkaloid content: Lundström 1971b].

N,N-Dimethyl-3-methoxytyramine (trace) Lundström 1971a. [0.5-2% of total alkaloid content: Lundström 1971b].

Lophophora williamsii var. caespitosa Y. Ito n.n.

[Varietal name is wisely rejected by most authorities as simply being a multi-headed form that normal growth can take. See Anderson or Benson. Bottom image is a normal wild caespitose plant.]

Mescaline 0.701% (± 0.085) [dry wt.]

Peyotline 0.300% (± 0.095) [dry wt.]

Häbermann 1978a (from Štárha in Ghyrm 1997)]

Another analysis of this variety was published (in Japanese) by Futia et al. 1972. In this paper they reported the four new alkaloids listed under L. williamsii above (first 4 on our list) and also Pellotine (0.01%), Anhalidine (0.005%), Anhalonidine (0.001%), Anhalamine (detected), & Lophophorine (detected); All % by fresh wt. They apparently did not detect ANY mescaline (a caespitose diffusa?) but we have some distrust of our translator’s accuracy so mention this with reservations. They analyzed plants grown in Japan. And apparently named one of their new compounds, Peyotine. Shulgin & Shulgin 1997 have pointed out that this is certain to cause confusion at some point down the road due to its use for another compound entirely.

Lophophora williamsii var. decipiens Croizat

[Varietal name is wisely rejected by most authorities. Croizat’s designated type specimen was a drawing (in Britton & Rose 1922), made from a photograph taken of a peyote plant, obtained via France, with no collection or locality information available. His description was further based on a plant furnished to him with no origin information. It was apparently identified as synonymous with the drawing based on it lacking ribs, instead being basally tubercled, and having more prominent flowers. He claims decipiens possesses flowers that “freely reaches out of the top of the plant”. See Anderson and/or Benson and/or Bravo.]

Modern attempts to describe the Coahuilan material by this name seem to lack published descriptions that can be demonstrably linked to the type. It is said to have an ashen grey color, light pink flowers and expressing tubercles rather than ribs (the latter form is not infrequently observable as individuals within large populations of normal L. diffusa, L. fricii and L. williamsii) These features (ashen grey coloration, a tuberculate appearance and pink or reddish flowers) can actually be considered to be fairly common for fricii. In fact Koehres & some others logically recognize their “decipiens” as L. fricii var. decipiens.

So far as we can determine the purported synonymy is based entirely on inferences from a couple of points of simple morphology and supposition based on reported geographical distribution rather than proof. There is no doubt fricii expressed this form though.

The novel characteristics (including an unusually high number of seeds in the fruit) that are now mentioned in the newer description of var. decipiens were NEVER mentioned by Croizat. It MAY eventually be proven to be synonymous but this is presently still in need of proof.

Croizat’s ENTIRE Latin diagnosis: “Culta pusilla ca. 5-6 cm. lata. Costis primum ca. 1.1, subtus in tuberculis conicus solutis. Flore roseo, in anthesi tubo elongato primo intuitu peculiari.”

Due to its prior usage, decipiens is AT BEST an invalid name. It is also possible that this material could be synonymous with that referred to by US authors as Lophophora echinata or Lophophora williamsii var. echinata (a good amount of which does form ribs). Be aware that in Europe material labeled L. echinata is often L. diffusa.

Mescaline 0.724% (± 0.092) [dry wt.]

Peyotline 0.288% (± 0.066) [dry wt.]

Häbermann 1978a (from Štárha in Ghyrm 1997)]
Cactus Chemistry: By Species

Lophophora williamsii var. pentagona Croizat
[Varietal name is wisely rejected by most authorities as simply being a 5-ribbed form that normal growth can take and it can be found occurring in any Lophophora species. It is not even correct to describe it as a proper form since it is typically transitory. It is common in juveniles but does infrequently persist into adulthood.

See Anderson or Benson]
Mescaline 0.78% (± 0.049) [dry wt?]
Pellotine 0.296% (± 0.065) [dry wt?]
HABERMANN 1978a (from Starha in Grym 1997)

Mammillaria aselliformis W.Watson
See as Pelecyphora aselliformis

Mammillaria centricirrhra Lemaire
Fruit contains Phyllocactin (63.9% of total), Betanin (26.2% of total), Isophyllocactin & Isobetanin. PIATTelli & Imperato 1969
The betacyanin Mammillarinin (Betanidin 5-O-(6’-O-malonyl)-beta-sophoroside) was identified as a fruit pigment.

Wybraniec & Nowak-Wydra 2007
Listed as containing unidentified alkaloid(s) but either the entry included no reference or else the reference that was cited (Brown et al. 1968) did not mention the species.

Mammillaria coronata Scheidweiler
A new betacyanin (Betanidin 5-O-(6’-O-malonyl)-beta-sophoroside) was reported and named Mammillarinin.

Wybraniec & Nowak-Wydra 2007

Mammillaria crugii Lindsay Needs an analysis.
See comments in the Activity Notes

Mammillaria crinita DC
See as Mammillaria wildii (?)

Mammillaria dactylythea Labouret
See as Coryphantha macromeris

Mammillaria dioica K.Brandegee
CO2 uptake occurred entirely at night through the stems (under well watered conditions)

Nobel & Hartsock 1986

Mammillaria disciformis DC See as Strombocactus disciformis

Mammillaria donatii Berge ex Schumann
A new betacyanin (Betanidin 5-O-(6’-O-malonyl)-beta-sophoroside) was reported and named Mammillarinin.

Wybraniec & Nowak-Wydra 2007

Mammillaria elongata DeCandolle
β-O-Methylsympinehrine (trace)
Hordenine (0.0005% dry wt.)
N-Methyltyramine (trace)
Synehrine (0.0009% dry wt.)
Tyramine (trace)

West & McLaughlin 1973

Mammillaria elongata DeCandolle var. rufrococea K.Schumann
Reported to contain Kaempferol & Quercetin (Flavonols)
Richardson 1978 (based on acid hydrolysis)

Mammillaria gracilis Pfeiffer
Structures of protein linked N-glycans in different tissues of this cactus was studied by BALEN et al. 2006
BALEN et al. 2007 looked on how environmental factors influenced their structure.

See comments in the Activity Notes
Mammillaria grahamii Engelmann Needs an analysis
Mammillaria grahamii Engelmann var. olivae (Oscut) L. Benson Needs an analysis
See comments in the Activity Notes.

Mammillaria gymnifera Engelmann
A new betacyanin was reported; named Mammillarinin (Betanidin 5-O-(6′-O-malonyl)-β-sophoroside).
Wybraniec & Nowak-Wydra 2007

Mammillaria hidalgensis J. Purpus
Reported to contain Betalains as pigments. Wohlpard & Marby 1968 cited Dreiding 1961

Mammillaria heyderi Meuhlenforsdt
3,4-Dimethoxy-N-methylphenethylamine (Over 50% of the 10-50 mg of total alkaloid/ 100 grams fresh) Bruhn & Bruhn 1973 (Also mentioned in Bruhn 1973)
Reported to contain Betalains as pigments. Wohlpard & Marby 1968 cited Wohlpard 1967
Reports of ethnopharmacological use appear to be in error. See Activity Notes for more details.

Mammillaria infernillensis Craig
A new betacyanin (Betanidin 5-O-(6′-O-malonyl)-β-sophoroside) was reported and named mammillarinin.
Wybraniec & Nowak-Wydra 2007

Mammillaria krameri Meuhlenforsdt
A new betacyanin (betanidin 5-O-(6′-O-malonyl)-β-sophoroside) was reported and named mammillarinin.
Wybraniec & Nowak-Wydra 2007

Mammillaria karwinskiana Martius
A new betacyanin (Betanidin 5-O-(6′-O-malonyl)-β-sophoroside) was reported and named Mammillarinin.
Wybraniec & Nowak-Wydra 2007

Mammillaria krameri Meuhlenforsdt
A new betacyanin (betanidin 5-O-(6′-O-malonyl)-β-sophoroside) was reported and named mammillarinin.
Wybraniec & Nowak-Wydra 2007

Mammillaria lenta K. Brandegge
Reported to contain unidentified alkaloid(s). Chalet 1980a cited Dominguez et al. 1969

Mammillaria lewini K. Karsten See as Lophophora williamsii
Mammillaria longimamma De Candolle See as Dolichothele longimamma
Mammillaria longimamma sphaerica K. Brandegge See as Dolichothele sphaerica
Mammillaria longimamma uberiformis Schumann See as Dolichothele uberiformis
Mammillaria macromeris Engelmann See as Coryphantha macromeris

Mammillaria magnimamma Haworth
Unidentified alkaloid(s) reported. Heffter 1898a
Fruit contains Phylloctacin (65.2% of total), Betanin (34.8% of total) and traces of Isophylloctacin & Isobetanin. Piattelli & Imperato 1969

A new betacyanin (betanidin 5-O-(6′-O-malonyl)-β-sophoroside) was reported and named mammillarinin. Wybraniec & Nowak-Wydra 2007

Mammillaria magnimamma var. divergens Haworth
Fruit contains Phylloctacin (80.0% of total), Betanin (10.2% of total), Isobetanin (9.8% of total) and traces of Isophylloctacin. Piattelli & Imperato 1969

Mammillaria melaleuca Karwinsky ex Salm-Dyck See as Dolichothele melaleuca

Mammillaria melanocentra Poselger
Acetovanillone (Apocynine) (0.11367% dry wt.) Mammillarol (a partially characterized triterpenoid) (0.0069% dry wt.)
An unidentified alkaloid was reported by Brown et al. 1968.

Mammillaria meiacantha Britton & Rose
Positive Mayer’s test. GC showed one alkaloid present but it was not identified. Bruhn & Bruhn 1973.

Mammillaria melana Monica Coryphantha runyonii (Brit. & R.) Böd.
This particular paper by Dominguez is in reference to Mammillaria melanocentra rather than to Coryphantha runyonii as is sometimes presented in alkaloid listings. Confusion on synonymy is not just easy but easy to locate.

Nomenclatural synonyms:
Mammillaria melanocentra Poselger var. runyonii (Britton & Rose) R. T. Craig in the Mammillaria Handbook 65. 1945
= Mammillaria runyonii Boed. Mammillarien-Vergleich-Schluessel 52. 1933
= Mammillaria runyonii (Britton & Rose) Boed.
Neomammillaria runyonii Britton & Rose; Britton & Rose Cactaceae 4: 81. 1923 [24 Dec 1923]
There are many references to Mammillaria runyonii Britton & Rose being a synonym for Coryphantha runyonii. Including some authoritative databases.
Often this is given as Coryphantha runyonii (Britton & Rose) Cory which was published In: Rhodora 38(455): 407. 1936.

Coryphantha runyonii Britton & Rose:
Coryphantha macromeris subsp. runyonii (Britton & Rose) N. P. Taylor
Coryphantha macromeris var. runyonii (Britton & Rose) L. D. Benson
Lepidocoryphantha runyonii (Britton & Rose) Backberg.

Incredibly, Britton & Rose 1923 actually used “runyonii” for two different new species; both of which were discovered by Runyon. However, neither one was as Mammillaria runyonii. Hence Cory’s use of Mammillaria runyonii in 1936 to refer to Britton &
Rose's Coryphantha runyonii and Boedeker's use of Mammillaria runyonii in 1933 to refer to Mammillaria melanocentra (Britton & Rose's Neomammillaria runyonii) has resulted in some persistent confusion.

Mammillaria microcarpa Engelmann
3,4-Dimethoxyphenethylamine (0.0015% (± 0.0006) in chlorophyllous tubercles, 0.0035% (± 0.0027) in cortex tissue, 0.0007% (± 0.0002) in vascular tissue and 0.0008% (± 0.0004) in the root.) Knox et al. 1983. [Knox & Clark 1986 found it to be present in only 64% of their samples.]
Hordenine (0.0017% by dry weight) Howe et al. 1977; (0.0035% (± 0.0017) in chlorophyllous tubercles, 0.017% (± 0.0053) in cortex tissue, 0.019% (± 0.012) in vascular tissue and 0.036% (± 0.023) in the root.) Knox et al. 1983. [Knox & Clark 1986 found it to be present in 95% of their samples]
N-Methyltyramine (0.0019% dry wt.) Howe et al. 1977; (0.0094% (± 0.0028) in chlorophyllous tubercles, 0.025% (± 0.006) in cortex tissue, 0.014% (± 0.0073) in vascular tissue and 0.014% (± 0.0023) in the root.) Knox et al. 1983. [Knox & Clark 1986 found it to be present in all of their samples]
Tyramine 0.0064% (± 0.0033) in chlorophyllous tubercles, 0.014% (± 0.0099) in cortex tissue, 0.004% (± 0.0028) in vascular tissue and 0.0029% (± 0.0017) in the root.) Knox et al. 1983. [Knox & Clark 1986 found it to be present in all of their samples]
[T Knox & Clark 1986 looked at 129 individuals from 15 Arizona populations. The occurrences of particular alkaloids showed no clear associations with the geographical distribution.]
Mammillaria microcarpa is considered variously either synonymous with Mammillaria grahamii or a variety of it. Toss a coin.
For sake of aiding keyword searches we kept them separate.

Mammillaria multiceps Salzm-Dvck
Reported to contain unidentified alkaloid(s). Chalet 1980a cited Dominguez et al. 1969

Mammillaria neumanniana Lemaire
Fruit contains Phyllocactin (50.2% of total), Betanin (30.9% of total), Isophyllocactin (18.9% of total) and traces of Isobetanin. Piattelli & Imperato 1969

Mammillaria pilcayensis Bravo
Seed coats reported to contain guaiacyl/syringyl lignins. Chen et al. 2012

Mammillaria pusilla (DC) Sweet
Reported to contain Betalains as pigments. Wohlpard & Mabry 1968 cited Dreiding 1961

Mammillaria rhodantha Link & Otto
Reported to contain Betalains as pigments. Wohlpard & Mabry 1968 cited Dreiding 1961

Mammillaria roseo-alba BoeDEcker
A new betacyanin (Betanin 5-O-(6'-O-malonyl)-β-sophoroside) was reported and named Mammillarinin. Wybraniec & Nowak-Wydra 2007

Mammillaria runyonii (Britton & Rose) BoeDEcker
See as Mammillaria melanocentra

Mammillaria runyonii (Britton & Rose) BoeDEcker IS NOT synonymous with Mammillaria runyonii Cory

Mammillaria runyonii Cory
See as Coryphantha macromeris var. runyonii

Mammillaria runyonii Hort
See as Coryphantha macromeris var. runyonii

Mammillaria saffordii (Br. & R.) Bravo
Reported to have no detectable alkaloids in Dingerdisen & McLaughlin 1973b

Mammillaria senilis is not the same plant as Mamillopsis senilis but the equating of them appears in the literature. (ex.: Bye 1979, p 35)

Mammillaria seitziana Martius
Fruit contains Phyllocactin (60.1% of total), Betanin (24.9% of total), Isobetanin (15.0% of total) and traces of Isophyllocactin. Piattelli & Imperato 1969

Mammillaria setigera
Betalains as pigments. Wohlpard & Mabry 1968
df Dreiding 1961

Mammillaria sphaerica Dietrich ex Poselger See as Dolichothele sphaerica

Mammillaria tetrancistra Engelmann
Hordenine (0.0033% (± 0.0023) in chlorophyllous tubercles, 0.013% (± 0.0027) in cortex tissue, 0.026% (± 0.017) in vascular tissue and 0.047% (± 0.03) in the root.) Knox et al. 1983
N-Methyltyramine (0.012% (± 0.0034) in chlorophyllous tubercles, 0.06% (± 0.017) in cortex tissue, 0.022% (± 0.004) in vascular tissue and 0.0094% (± 0.0028) in the root.) Knox et al. 1983 (Wild collected: Arizona)

Mammillaria uberiformis Zuccarini ex Pfeiffer
See as Dolichothele uberiformis

Mammillaria wilddii A.Dietrich had 1 unidentified alkaloid reported [C13H13NO3] Rätsch 1998 cited Lüthy 1995.

Mammillaria williamsii Coulter
See as Lophophora williamsii

Mammillaria woodsii R.T.Craig
Reported to contain Betalains as pigments. Wohlpard & Mabry 1968 cited Dreiding 1961

Mammillaria zeilmanniana Bod.
Reported to contain Betalains as pigments. Wohlpard & Mabry 1968 cited Dreiding 1961
Mammillaria zuccariniiana Martius
Fruit contains Phyllocactin (45.2% of total), Betanin (25.3% of total), Isophyllocactin (19.6% of total) & Isobetanin (9.9% of total). PIATTELI & IMPERATO 1969

Marginatocereus marginatus (DC) Backeb erg
See as Pachycereus marginatus

Marshallocereus aragonii (Web.) Backeb erg
See as Lemaireocereus aragonii

Marshallocereus thurberi (Engelmann) Backeb erg
See as Lemaireocereus thurberi

Matucana madisoniorum is erroneously rumored to contain mescaline.
Analysis of it could detect no alkaloid (unpublished GC-MS by Shulgin; personal communication)
See additional comments in Activity Notes.

Melocactus bellavistensis has been purported to have use. It needs study and an analysis.
See additional comments in Activity Notes.

Melocactus delessertianus Lemaire
Tyramine (no quantification) DOETSCH et al. 1980

Melocactus maxonii (Rose) Gürke
3,4-Dimethoxypyphenethylamine (less than 0.01% dry wt.) MA et al. 1986
4-Hydroxy-3,5-dimethoxypyphenethylamine (Around 0.01% dry wt.)[?] MA et al. 1986 (Commercial: CA) Tyramine (no quantification) DOETSCH et al. 1980

Melocactus obtusipetalis Lemaire
Seed coats reported to contain a homopolymer of cafeyl alcohol as C-lignins. CHEN et al. 2012

Melocactus peruvianus Vaupe l
Reported to contain Betalains as pigments. WOHLPART & MABRY 1968 cited DREIDING 1961
CAVCO JIMENEZ 1977 (page 91) asserted that it contains Mescaline but did not offer any supportive reference. See additional comments in the Activity Notes.

Monvillea spegazzinii (A.Webber) Britton & Rose
Reported to contain Betalains as pigments. WOHLPART & MABRY 1968 cited DREIDING 1961

Myrtillocactus cochal (Orc.) Britton & Rose
“cochal” STANDELEY 1924: 911
92.6% water by weight [SANDOVAL et al. 1957 found that 70% water weight was lost when drying 7 days at 35°C.]
Cochaline acid (A triterpene acid; 16-epi-echinocystic acid) 0.56% dry wt. DIERASSI et al. 1955c and DIERASSI & THOMAS 1954; (1.25% by dry wt DIERASSI et al. 1957 [a portion of this was via its methyl ether])
Chichipegenin (A triterpene) 2.47% by dry wt: DIERASSI et al. 1957; 0.83% by dry wt: SANTOVAL et al. 1957 [Collected near Tehuacán, Puebla]
Myrtillogenic acid (A β-Amyrin-type terpene: 3β, 16β,28-trihydroxy-Δ13-olean-29-oyic acid [DIERASSI & MONSIMER 1957]) (0.19% dry wt, via the methyl ether) DIERASSI et al. 1957. [Cultivated: Corona, California]
Longispinogenin (0.157% dry wt) DIERASSI et al. 1957
Oleanolic acid (via the methyl ether) SANDOVAL et al. 1957
DIERASSI 1957 presents almost the same list but omits oleanolic acid; citing unpublished observations by DIERASSI, MONSIMER & THOMAS

Myrtillocactus eichlamii Britton & Rose
Cochaline acid (0.37% by dry wt via the methyl ether)
Chichipegenin (?This is listed in their discussion in the text but does not appear in the experimental account)
Myrtillogenic acid (0.028% dry wt. via the methyl ether)
Longispinogenin (0.83% dry wt)
Oleanolic acid (0.16% dry wt. via the methyl ether)
β-Sitosterol (detected)
Manadiol (0.14% dry wt)
DIERASSI et al. 1957 [Collected near Guatemala City] citing unpublished observations by DIERASSI & BURSTEIN

Myrtillocactus geometrizans (vonMartius) Console
“garambullo” or “padre nuestro” or “blue myrtle” or “billberry cactus” [Mescaline was apparently reported in error. Weak presence [0.30% by dry weight] was only isolated from plants previously used as grafting stocks for L. williamsii. However, directly in conflict with his experimental account, SINISCALCO also includes a closing comment that suggests one of his controls contained mescaline. SINISCALCO 1983]
[Alkaloids were only detected in one of the preliminary screenings of this species by FONG et al. 1972. All other tests indicated no alkaloid. All were from Mexico.]
Cochaline acid (0.25% by dry wt via the methyl ether)
Chichipegenin (0.62% by dry wt via the methyl ether)
Myrtillogenic acid (0.14% dry wt. via the methyl ether)
Longispinogenin (0.0025% dry wt)
No detectable alkaloid.
DIERASSI et al. 1957 [Material was collected at km 205 of Mexico-Laredo Hwy]
DIERASSI 1957 cited unpublished observations by DIERASSI, LIPPMAN & MONSIMER
Chichipegenin, Peniocerol, Macdougallin were reported from an extract of plant and roots.
CESPEDES et al. 2005

A study of the flavor of the “berrycactus” decided that nine volatile compounds were the most important components:
Furfural,
5-Methyl-2-furancarboxaldehyde,
2(5H)-Furanone,
5-Acetoxyethyl-2-furaldehyde,
2-Cyclohexen-1-ol,
Octanoic acid ethyl ester,
Decanoic acid ethyl ester,
Octanoic acid, Phenylethyl alcohol.

Vázquez-Cruz et al. 2012

See comments in Activity Notes.

Myrtillocactus geometrizans var. grandiareolatus (Bravo) Backeb. See as *Myrtillocactus grandiareolatus*. Hunt 1999 considers this to be synonymous with *Myrtillocactus geometrizans*

Myrtillocactus grandiareolatus Bravo

[See Bravo 1932]

Chichipegenin (nearly 1% by dry wt)

Oleanolic acid (0.2% dry wt. via the methyl ether)

Dierassi *et al.* 1957 [Collected near Zapotitlán, Mexico]

Dierassi 1957 cited unpublished observations by Estrada & Manjarrez

Myrtillocactus schenckii (Purpus) Br. & R.

AKA “vichishovo” or “garambulo”

Stellatogenin (0.052% by dry wt)

Oleanolic acid (0.136% dry wt. via the methyl ether)

Dierassi *et al.* 1957 [Collected in Oaxac, Mexico]

Dierassi 1957 cited unpublished observations by Manjarrez

Neobuxbaumia euphorbioides (Haw.) Buxb.

Reported to show no detectable alkaloids (with MIKES) in Ungcr *et al.* 1980

Neobuxbaumia multiareolata (E.Y. Dawson) Bravo *et al.*

Salsolidine, Anhalidine and Arizonine in trace amounts.

Flores Ortiz *et al.* 2003 (gc-ms)

Neobuxbaumia scoparia (Poselger) Backeb.

Salsolidine, Anhalidine and Arizonine in trace amounts.

Flores Ortiz *et al.* 2003 (gc-ms)

Neobuxbaumia tetetzo (Weber ex Coulter) Backeb.

No detectable alkaloids.

Chalet 1980a cited Dominguez *et al.* 1969 (analyzed as Cephalocereus teteizo (A. Weber) Vauipel)

Salsolidine, Anhalidine and Arizonine in trace amounts.

Flores Ortiz *et al.* 2003 (gc-ms)

Neogomesia agavooides Castañeda. See as Ariocarpus agavooides

Neollodyia intertexta (Engelmann) Kimnach

[as Echinomastus intertextus Engelmann]

Reported to contain druses of Weddelite.

These druses appeared to be comprised of symmetrical tetragonal crystals that were piled onto one another. They were found to possess a 13C/12C ratio that was 1% higher than the ratio of its environmental atmosphere (the ratio was also richer than was found within woody tissues). The cortex of older regions within the stem was found to contain up to 50% of its dry weight as the oxalate.

Rivera & Smith 1979

(Collected in Paradise Canyon, West Texas)

Neolloydia intertexta var. dasyacantha (Engelmann) L. Benson

Reported to contain a single unidentified alkaloid when harvested in Spring and no alkaloid when harvested in the Fall.

Neolloydia odorata was reported to show no detectable alkaloids. Chalet 1980a cited Dominguez *et al.* 1969

Neomammillaria anything. See under Mammillaria

Neomammillaria runyonii Britton & Rose See as Mammillaria melanoventra [Not a synonym for Coryphantha runyonii]

Neoperotiera ebenacantha

Betalain pigments. Wohlpart & Mabry 1968 cited Driending 1961

We are unclear if this was Neoperotiera ebenacantha (Hort. non Monv.) Y. Ito or Neoperotiera ebenacantha (Monv.) Berg.

Neoraimondia arequipensis var. roseiflora (Werdemann & Backeb.) Rauh

3,4-Dimethoxyphenethylamine (less than 0.01% dry wt.)

4-Hydroxy-3,5-dimethoxyphenethylamine (Less than 0.01% dry wt.)

Ma *et al.* 1986 (Collected by Ostolaza #85055)

Neoraimondia macrostibas (Schumann) Britton & Rose

86% water by weight

"no alkaloid"

A basic, partially crystalline material was obtained. It showed multiple components: all unidentified; ethanol soluble & ether insoluble. Also noted was a gummy ‘non-glycosidic’ neutral material and substantial amounts of an unidentified neutral material (oily or amorphous)

[No saponins or terpenes observed]

Dierassi *et al.* 1955b [Wild collected; Peru]

This species is in need of further analysis.

See more comments in Part B San Pedro

Nopalea cochenillifera (L.) Salm-Dyck

Mucilage polysaccharide was 0.48% of total weight of the fresh plant.

Uronic acid content of polysaccharide: 20%

Rhamnose, arabinose, galactose, xylose (1:4.7:2.1:1.8)

Mintz *et al.* 1975

See comments in Activity Endnotes.
Nopalxochia ackermannii (HAWORTH) F.M.KNUTH
Appears listed as containing an unidentified alkaloid but either the entry included no reference or else the reference that was cited (BROWN et al. 1968) did not mention the species. The intended reference was likely HEFFT 1898; who included no additional information.

According to HORTUS, the plants propagated under this name are actually a hybrid of this species with a Helioceerus

Nopalxochia phyllanthoides (DC) Br. & R.
Reported to contain Betalains as pigments.
Betacyanin first reported by KRYZ.

The genus Nopalxochia is now lumped into Disocactus along with some former members of Epiphylum, Phyllocactus and Helioceerus.

Normanbokea pseudopseudocelt (BACKEBERG) KLAIDIW & BUxbaUM.
See as Ptelephora pseudopseudocelt

The former Notocactus are now in the genus Parodia.

Notocactus concinnus (MONVILLE) BERGER
Mucilage determined to be comprised of Arabinose (22.0%), Galactose (42.7%), Galacturonic acid (14.1%), Rhamnose (7.6%) & Xylose (13.7%).
MOYNA & DiFARBO 1978 (ANalyzed MAM 1219)

Notocactus mammulosus (LEMAIRE) A.BERGER
Hunt lists as Notocactus mammulosus (LEMAIRE) BACKEBERG
Reported to contain Betalains as pigments.
WOHLPART & MABRY 1968 cited DREIDING 1961

Notocactus ottionis (LEMAIRE)
BERGER ex BACKEBERG & KNUTH
Hordenine (%) DiVries et al. 1971
[N-Me-3,4-DiMeO-PEA has been listed in error. It is not supported by the reference that was cited: SMITH 1977.]
Reported to contain Betalains as pigments.
WOHLPART & MABRY 1968 cited DREIDING 1961

Nyroceerus guatemalensis BRITTON & ROSE
Devoid of glycosides
DIERASSI et al. 1953c [Guatemala; cultivated Guatemala City] Most members of this genus, including this species, have been transferred elsewhere. (In this case to Pentocereus and absorbed into Pentocereus hirschianus (SCHUMANN) HUNT) The work of ARIAS et al. 2005 indicates that Nyroceerus should be preserved only as a monotypic genus (N. serpenitus).

Obregonia denegrii FRUC
Hordenine (0.002% dry wt.) NEAL et al. 1971a; (1-10% of 1-10 mg total alkaloids/ 100 gm. fresh.) BRUHN & BRUHN 1973.
N-Methylltyramine (0.0002% dry wt.) NEAL et al. 1971a; (trace) BRUHN & BRUHN 1973.

Tyramine. (Over 50% of 1-10 mg of total alkaloids/ 100 gm. of fresh) BRUHN & BRUHN 1973
[All 3 reported in HABERMANN 1974a (from STARRIA ndf)]
Quinic acid (tlc & glc by KRIENSTAD & NORDAL 1975)
β-Sitosterol (tentative ID) DOMINGUEZ et al. 1969
ANDERSON 1967 & DOMINGUEZ et al. 1969 reported unidentified alkaloids.

Opuntia
More detailed entries for the mescaline containing species can be found in Part A of Sacred Cacti.

Opuntia basilaris ENGELMANN & BIGELOW
Also appears spelled basilaria. We went with BENSON 1982.
4-Hydroxy-3,5-dimethoxyphenethylamine (Less than 0.01%)
Mescaline (0.01% dry wt.) [ie 100 mg/ 1 kg. dry wt] MA et al. 1986 (ANalyzed F. ZEYLMaker #8504)

Opuntia bergeriana WEBER
Fruit contains Betain (major), Isobetain, Betainid and traces of Phyllocactin & Isophyllocactin: PIATTIELLI & IMPERATO 1969
Betain in fruit (biosynthetic study) MILLER et al. 1968
Flower contains betacyanins: Betain (major) & Isobetain. PIATTIELLI & MINALE 1964b

Opuntia bigelovii ENGELMANN (ANalyzed F. ZEYLMaker #8508)
Reported by MA et al. 1986 to contain no detectable alkaloid.

Opuntia boldinghii BRITTON & ROSE
Fatty acids composition of seed oil (relative percents).
Linoleic acid 67.2±0.1%
Oleic acid 18.0±0.1%
Palmitic acid 10.4±0.1%
Stearic acid 3.0±0.1%
Palmitoleic acid 0.5±0.1%
Linolenic acid 0.3±0.1%
Arachidic acid 0.3±0.1%
Gadoleic acid 0.4±0.1%
GARCÍA PANTALEÓN et al. 2009

Fruits shown to contain betalains by Viloria-Matos et al. 2002. Proximate analyses was performed on fruits and on cladodes by MORENO-ALVAREZ et al. 2003 & 2006. [from GARCÍA PANTALEÓN et al. 2009]

Opuntia brasiliensis (WILLDENOW) HAWORTH
See as Brasiliopuntia brasiliensis

Opuntia bradtiana (COULTER) K. BRANDEGEE see as Grusonia bradtiana

Opuntia clavata ENGELMANN see as Corynopuntia clavata

Opuntia chlorotica ENGELMANN & BIGELOW
Quercetin-3-glucoside, Quercetin-3-rutinoside, Iso-rhamnsetin-3-glucoside, Isoharmnetin-3-rutinoside, Isorhamnetin-3-rhamnosylgalactoside, and...
Cactus Chemistry: By Species

Kaempferol 3-galactoside (all flavonoids) in flowers.

Opuntia comondensis (Coulter) Britton & Rose
Cholesterol (4.4% of total)
24α-Methylcholesterol (8.8% of total)
Sitosterol (86.7% of total)
Salt et al. 1987

Opuntia curvispina Griffiths
Quercetin-3-glucoside, Quercetin-3-rutinoside, Iso-rhamnetin-3-glucoside, Isorhamnetin-3-rutinoside, Iso-rhamnetin-3-rhamnosylgalactoside, and Kaempferol 3-galactoside (all flavonoids) in flowers.

Clark & Parfitt 1980
This name is considered unresolved.

Opuntia decumbens Salm-Dyck
Fruit determined to contain betalains. Fischer & Dreiding 1972 & Miller et al. 1968 (Both studied the biosynthesis of Betanin)

Opuntia dejecta Salm-Dyck
Fruit contains Betanin (major), Isobetanin and traces of Phyllocactin. Piattelli & Imperato 1969

Opuntia diademata Lemaire
Citric acid (3.0% in stem juice)
Hegnauer 1964 cited Bergström 1934

Opuntia dillenii Haworth See as Opuntia stricta dillenii

Opuntia ellisiana Griffiths
Crystalline material isolated from the stems shows a very complex mineral composition that includes:
Whewellite (monohydrated calcium oxalate)
Opal (SiO2)
Calcite (CaCO3)
Glushinskite (dihydrated Magnesium oxalate).
Monje & Baran 2005

Opuntia engelmannii Salm-Dyck
Flower contains Betanin (major), and an unidentified Betacyanin.
Fruit contains Betanin (major), Phyllocactin & Isobetanin.
Piattelli & Imperato 1969
Reported to contain druses of Whewellite.
Rivera & Smith 1979
(collected on the campus of the University of Texas at Austin)

Opuntia elatior Mill.
β-Sitosteryl
Opuntiol (0.05% dry wt) (2-Hydroxymethyl-4-methoxy-α-pyrene)
Gangul et al. 1965 (Collected in India)

Narcissin (a flavone) was found in the flowers.
Shabbir & Zaman 1968

Opuntia erinacea Engelm & Bigelow var. hystricina (Engelm & Bigelow) L. Benson
Reported by Meyer et al. 1980 to contain traces of unidentified alkaloids.

Opuntia ficus-indica (Linnaeus) Miller
Pads determined to contain 87.4% (young) and 85.4% (mature) water by weight. Kircher 1982
Mescaline (% not given)
N-Methyltyramine (% not given)
Tyramine (% not given)
Four additional unidentified bases present as trace amounts.
El-Moghazy et al. 1982 (Material growing in Egypt.)
Unidentified lactone-forming acid (tlc by Kringstad & Nordal 1975)
In cladodes:
Glucose and Galacturonic acid were found to be the primary sugars
Kaempferol and Isorhamnetin glycosides (as glucosides and rhamnosides) were also detected.
Calcium oxalate crystals were present in large amounts.
Reported no observable antimicrobial activity.
Mandalari et al. 2009

Myrcene, Limonene & γ-Terpinene (terpenes: small amounts in the de Castilla variety fruit) Flath & Takahashi 1978.
[Also reported the presence of other volatile compounds in the fruit including many alcohols, aldehydes, ketones, esters & hydrocarbons such as Toluene & Methylcyclohexane]
β-Sitosterol Dawider & Fayez 1961; (0.04% dry wt. in flowers) Arcoleyo 1966
var. saboten (leaf & stem): 2 triterpenoids and eight flavonoids.
(6S,9S)-3-oxo-ceionol-[3-D-glucopyranoside
Corchoionoside C (+)-Dihydrokaempferol (Aromadendrin)
(+)-Dihydroquercetin (Taxifolin)
Eriodictyol
Kaempferol
Kaempferol 3-methyl ether
Narcissin
Quercetin
Quercetin 3-methyl ether
Lee et al. 2003
Flowers were found to contain the flavonoids: Penduletin, Luteolin, Kaempferol, Quercetin, Quercitrin & Rutin
El-Moghazy et al. 1982
Mucilage was determined to be comprised of D-Glucose, D-Galactose, L-Arabinose, D-Xylose, L-Rhamnose and D-Galacturonic and D-Gluconic acids.
El-Moghazy et al. 1982
free Lauric acid, Myristic acid, Palmitic acid, Stearic acid and Oleic acid & also the esters of Myristic, Palmitic, Stearic, and Oleic acids. Arcoleo 1966

Reported to contain Betalains as pigments. Wohlfart & Marry 1968 cited Piattelli & Minale 1964

Fruit contains betacyanins: Betanin (major) & Isobetanin. Piattelli & Minale 1964

Indicaxanthin (a betaxanthin) was reported in mature fruit (orange - yellow variety) by Impellizzeri & Piattelli 1972 (Also in Piattelli et al. 1964a & 1964b)

Indicaxanthin & Betanin in fruit. Minale et al. 1965

tle examination showed a small amount of unidentified alkaloid and the absence of triterpene glycosides: Kircher 1982

Lipid content determined to be 2.5% by dry weight: Kircher 1982

Isothamnetin was found in the hydrolysate of flower pigments. Arcoleo et al. 1961.

Fruit was found to contain Maleic, Malonic, Malic, Succinic, Tartaric, Oxalic & Ascorbic acids. Ascorbic acid content determined to be 0.094% by fresh weight. El-Moghaazy et al. 1982

Malic acid, Citric acid, Piscidic acid, Piscidic acid monoethyl ester (0.0433%), Piscidic acid diethyl ester (0.0333%) and several other nonvolatile acids in fruit. Nordal et al. 1966.

1-Methylcitrate, 1,3-Dimethylcitrate, Trimethylcitrate & 1-Methylmalate were isolated from the fruit of Opuntia ficus-indica var. saboten ‘Makino’:

Han et al. 2001

Betalain distribution for three Sicilian cultivars of Opuntia ficus indica was studied by Butera .

These cultivars differ by producing either yellow, red, or white fruits due to the combination of two betalains, namely betanin (purple-red) and indicaxanthin (yellow-orange). They found that the yellow cultivar exhibited the highest amount of betalains, followed by the red and white ones.

White fruit:
Indicaxanthin comprised about 99% of the betalains.
Also found polyphenolic pigments.

Yellow fruit:
The ratio of betanin to indicaxanthin was 1:8 (w:w)
Also found polyphenolic pigments.

Red fruit:
The ratio of betanin to indicaxanthin was 2:1 (w:w)
Found that polyphenol pigments were negligible components.

Butera et al. 2002

Eight flavonoids were isolated from the stems and fruits of Opuntia ficus-indica var. saboten:
Kaempferol
Quercetin
Kaempferol 3-methyl ether
Quercetin 3-methyl ether
Narcissin
(+)-Dihydrokaempferol (Aromadendrin)
(+)-Dihydroquercetin (Taxifolin)
Eriodictyol
along with two terpenoids:
(6S,9S)-3-Oxo-α-ionol-β-D-glucopyranoside
Corchoionoside C

Lee et al. 2003

Dok-Go et al. 2003 reported:
Quercetin
(+)-Dihydroquercetin
Quercetin 3-methyl ether

These flavonoids were isolated from the ethyl acetate fractions of an extract of the fruits and stems of Opuntia ficus-indica var. saboten.

<table>
<thead>
<tr>
<th>Pulp</th>
<th>Skin</th>
<th>Seeds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose 35%</td>
<td>21%</td>
<td>–</td>
</tr>
<tr>
<td>Fructose 29%</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Protein 5.1%</td>
<td>8.3%</td>
<td>11.8%</td>
</tr>
<tr>
<td>Starch yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Cellulose 14.4%</td>
<td>29.1%</td>
<td>45.1%</td>
</tr>
<tr>
<td>Calcium –</td>
<td>2.09%</td>
<td>–</td>
</tr>
<tr>
<td>Potassium –</td>
<td>3.4%</td>
<td>–</td>
</tr>
</tbody>
</table>

El-Kossori et al. 1998. (All as dry weight)

Fruit sugars were found to include D-Glucose, D-Galactose, L-Arabinose, Fructose, & D-Glucuronic and D-Galacturonic acids prior to hydrolysis and showed D-Xylose, L-Rhamnose after hydrolysis.

El-Moghaazy mentioned that Awad et al. 1970 & Haralambs 1979 had reported Galactose, Arabinose, Xylose, Rhamnose and Galacturonic acid.

de Castilla fruit showed pH 4.85-6.3.
Citric acid was reported at levels of 0.084-0.12% according to Flath & Takahashe 1976.

Fruit juice of Sicilian cultivars of Opuntia ficus indica:

pH 6.4-6.5
Sugar content of 11-12% (mainly glucose and fructose)
L-ascorbic acid content of 31-38 mg/100 grams.
Manganese(II) (1.7-2.9 ppm)
Iron(III) (0.6-1.2 ppm)
Zinc(II) (0.3-0.4 ppm)
The metal ions appeared to be present mainly in the skin of the fruit or were "trapped" inside of the pulp.

Gurrieri et al. 2000

Linoleic acid was determined to be the major fatty acid in the seed oil (61.01%), with Oleic (25.52%) and Palmitic (12.23%) acids. Myristic, Stearic and Arachidonic acids were also present in low concentrations.

Özcan & Al Juhaimi 2011
Similar results were reported for oil extracted from Opuntia ficus-indica seeds. The oil constituted 13.6% of the whole seed. 16% saturated fatty acid, with a linoleic acid content of 63.66% followed by oleic 18.34%, palmitic 12.84% and stearic acid 2.81% el Finti et al. 2013

See comments in Activity Notes.

Fruit fragrance has been studied:
“In cactus pear, R-(–)-linalool is present in an enantiomeric excess of 36%.”
Sitril et al. 2004 cited Weckerle et al. 2001
E-2-hexenal, 1-hexanol, E-2-hexen-1-ol, E-2-noneno1 and E,Z-2,6-nonadienol are considered to be responsible for the melon-like character.
Weckerle et al. 2001
Also, reported by Wu et al. 2008:
Aspergiketal (A new spiroketal)
Physcon
Astereric acid
All three of which were isolated from a culture broth of Aspergillus terreus (An endophytic fungus found associated with the stems of Opuntia ficus-indica)
Weckerle et al. 2001
Volatile compounds identified in the fruit of Opuntia ficus indica by HRGC-MS

<table>
<thead>
<tr>
<th>Compound</th>
<th>Enantiomeric ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methyl butanoate</td>
<td>Methyl 2-methyl-butanoate</td>
</tr>
<tr>
<td>2-Methyl-3-buten-2-ol</td>
<td>Hexanal</td>
</tr>
<tr>
<td>3-Pentanol</td>
<td>1-Butanol</td>
</tr>
<tr>
<td>1-Pentene-3-ol</td>
<td>3-Pentene-2-ol</td>
</tr>
<tr>
<td>Z-3-Hexenal</td>
<td>1, 8-Cineol</td>
</tr>
<tr>
<td>E-2-Hexenal</td>
<td>2-Pentylfuran</td>
</tr>
<tr>
<td>3-Methyl-3-buten-1-ol</td>
<td>1-Pentanol</td>
</tr>
<tr>
<td>Methyl 3-hexenoate</td>
<td>Hexyl acetate</td>
</tr>
<tr>
<td>Acetoin</td>
<td>E-2-Pentene-1-ol</td>
</tr>
<tr>
<td>E-2-Heptenal</td>
<td>Z-2-Pentene-1-ol</td>
</tr>
<tr>
<td>E-2-Hexenyl acetate</td>
<td>1-Hexanol</td>
</tr>
<tr>
<td>E-3-Hexen-1-ol</td>
<td>Z-3-Hexen-1-ol</td>
</tr>
<tr>
<td>Nonanal</td>
<td>Methyl 2-(methylthio)-acetate</td>
</tr>
<tr>
<td>E-2-Hexen-1-ol</td>
<td>Z-2-Hexen-1-ol</td>
</tr>
<tr>
<td>E-2-Octenal</td>
<td>Acetic acid</td>
</tr>
<tr>
<td>1-Octene-3-ol</td>
<td>1-Heptanol</td>
</tr>
<tr>
<td>Methyl 3-hydroxybutanoate</td>
<td>E,E-2,4-Heptadienal</td>
</tr>
<tr>
<td>E-2-Hepten-1-ol</td>
<td>Linalool</td>
</tr>
<tr>
<td>1-Nonene-3-ol</td>
<td>1-Octanol</td>
</tr>
<tr>
<td>E, Z-2, 6-Nonadienal</td>
<td>Methyl benzoate</td>
</tr>
<tr>
<td>E-2-Octen-1-ol</td>
<td>1-Nonanol</td>
</tr>
<tr>
<td>2-Methylbutanoic acid</td>
<td>γ -Hexalactone</td>
</tr>
<tr>
<td>E-2-Nonenol</td>
<td>Methyl salicylate</td>
</tr>
<tr>
<td>E, Z-2,6-Nonadienal</td>
<td>1-Phenylethanol</td>
</tr>
<tr>
<td>Hexanoic acid</td>
<td>Geraniol</td>
</tr>
<tr>
<td>Benzyl alcohol</td>
<td>Perillalcohol</td>
</tr>
<tr>
<td>Octanoic acid</td>
<td>γ-Nonalactone</td>
</tr>
<tr>
<td>Methyl cinnamate</td>
<td>γ-Decalactone</td>
</tr>
<tr>
<td>Nonanoic acid</td>
<td>Decanoic acid</td>
</tr>
<tr>
<td>γ-Dodecalactone</td>
<td>Dodecanoic acid</td>
</tr>
</tbody>
</table>

Weckerle et al. 2001
CO₂ uptake occurred entirely at night through the stems (under well watered conditions while leafless).

Nobel & Hartsock 1986

Opuntia glomerata See as Opuntia articulata.

Opuntia guatemalensis Britton & Rose
Fruit contains Betanin (major), and an unidentified Betacyanin. Piattielli & Imperato 1969

Opuntia hickenii Britton & Rose
Candicine (%?) Nieto 1987

Opuntia humifusa Rafinesque-Schmaltz
No detectable alkaloid reported by Meyer et al. 1980
Lutein (A carotenoid: Xanthophyll), Carotene & possibly Rhodoxanthin (in pads). Romariz 1946. Quercetin was reported from the pads.
See comments in Activity Notes.

Cho et al. 2006
(Wild collected in New Jersey)
Cholesterol (5.0% of total)
24-β-Methylcholesterol (8.0% of total)
Sitosterol (87.0% of total)
Salt et al. 1987

Opuntia leuchotricha DC
Reported to contain Isorhamnetin, Quercetin & Kaempferol (Flavonols) Richardson 1978 (based on acid hydrolysis)

Opuntia lindheimeri Engelmann
Meyer et al. 1980 reported to contain unidentified alkaloids.
Reported to contain Betacyanins as pigments. Mabry et al. 1963
Isorhamnetin 3-rutinoside, Isorhamnetin 3-rhamnosylgalactoside, Quercetin, and Isorhamnetin 3-galactoside (all flavonoids) in flowers. Clark & Parfitt 1980
Hyperin (Quercetin-3-galactoside), Narcissin (Isorhamnetin-3-rutinoside), Isorhamnetin-3-galactoside, Isorhamnetin-3-rhamnosylgalactoside (flavonol glycosides; pigments from flowers) Rosler et al. 1966
Del Weniger 1984 related an amusing tale concerning this species. Apparently Engelmann based this species’ description on the pads of one species and the fruit of another. When discovering his error he corrected the description to being partly O. engelmannii and partly what he thought was a hybrid. The latter became O. leptocarpa “so there is nothing left to be O. lindheimeri”

Opuntia littoralis (Engelmann) Cockerell
var. littoralis
Quercetin-3-glucoside, Quercetin-3-rutinoside, Isorhamnetin-3-glucoside, Isorhamnetin-3-rutinoside, Isorhamnetin-3-rhamnosylgalactoside, and Kaempferol 3-galactoside (all flavonoids) in flowers. Clark & Parfitt 1980

Opuntia littoralis (Engelmann) Cockerell
var. martiniana (L. Benson) L. Benson
Quercetin-3-glucoside, Quercetin-3-rutinoside, Isorhamnetin-3-glucoside, Isorhamnetin-3-rutinoside, Isorhamnetin-3-rhamnosylgalactoside, and Kaempferol 3-galactoside (all flavonoids) in flowers. Clark & Parfitt 1980

Opuntia longispina Haworth
Whewellite was identified as druses.
Monie & Baran 2002

Opuntia macrocentra Engelmann
Meyer et al. 1980 reported as containing unidentified alkaloids.
Reported to contain Betalains as pigments. Wohlpart & Mabry 1968 cited Wohlpart 1967 (as Opuntia violacea) Flavanol production was found to be largely reduced when grown in the absence of UV rather than in sunlight. Berger et al. 2007.

Opuntia maldonadensis Arechavaleta
Hordenine (%?) DeVries et al. 1971

Opuntia matudae Scheinvar cv. Cuaresmeño
“Xoconomste”
Gallic, Vanilllic, 4-Hydroxybenzoic acids, Catechin, Epicatechin, and Vanillin were detected in the soluble phenolic fractions of the fruit.
Guzmán-Maldonado et al. 2010

Opuntia megacantha
Most view as a spiny wild Opuntia ficus-indica.
See comments in Activity Notes.

Opuntia microdasys (Lehmann) Pfeiffer
Whewellite was identified as druses.
Monie & Baran 2002

Opuntia monacantha Haworth
Flower contains Betanin (major), and Isobetanin.
Fruit contains Betanin (30.2% of total), Isobetanin (24.8% of total), an unidentified Betacyanin, Betanidin and Isobetanidin. Piattielli & Imperato 1969
Mucilage polysaccharide - 0.53% of total weight of fresh plant.
Uronic acid content of polysaccharide: 25%
Rhamnose: arabinose, galactose, xylose (1:3:3.5:1.5)
Mindt et al. 1975

Opuntia penicilligera Spegazzini
Whewellite was identified as druses.
Monie & Baran 2002
Opuntia pachypus K. SCHUMANN see as Austrocylindropuntia pachypus

Opuntia paraguayensis K. SCHUMANN
Fruit contains Betanin (major), Isobetanin, and Phyllocactin. PIATTELLI & IMPERATO 1969

Opuntia phaeacantha ENGELMANN was reported by MEYER et al. 1980 to contain unidentified alkaloids.

Opuntia pachypus K. SCHUMANN
See as Austrocylindropuntia pachypus

Opuntia paraguayensis K. SCHUMANN
Fruit contains Betanin (major), Isobetanin, and Phyllocactin. PIATTELLI & IMPERATO 1969

Opuntia phaeacantha ENGELMANN var. discata (GRIFFITHS) L. BENSON & WALKINGTON and var. major ENGELMANN
Quercetin-3-glucoside, Quercetin-3-rutinoside, Isorhamnetin-3-glucoside, Isorhamnetin-3-rhamnosylgalactoside, and Kaempferol 3-galactoside (all flavonoids) in flowers. CLARK & PARFITT 1980

Opuntia pilifera WEBER was reported to contain no detectable alkaloids in the screenings of FONG et al. 1972

Opuntia polyacantha HAWORTH
Approximately 90% water by weight.
Opuntioli (0.007% dry wt) (an α-pyrene: See O. elatior) Positive Mayer’s test for alkaloids but none identified. TELANG 1973 [Collected at Drumheller, Alberta, Canada]
Fruit contains Betanin (major), Isobetanin & Betanidin. PIATTELLI & IMPERATO 1969

Opuntia ritteri BERGER
Fruit contains Betanin (major), Isobetanin and Phyllocactin. PIATTELLI & IMPERATO 1969

Opuntia robusta WENDL.
Reported to contain Isorhamnetin, Quercetin & Kaempferol (Flavonols) RICHARDSON 1978 (based on acid hydrolysis)

Opuntia spp. hybrids
Variable amounts of Quercetin-3-rutinoside, Quercetin-3-glucoside and Kaempferol-3-glucoside (flavonoids) were comparatively reported in the flowers of 6 hybrids (and 3 species). CLARK et al. 1980 [Collected east of Florence, Arizona]

Opuntia streptacantha LEMAIRÉ
Fruit contains Betanin (major), Isobetanin, Phyllocactin & Isophyllocactin PIATTELLI & IMPERATO 1969
See comment in Activity Notes.

Opuntia streptacantha LEMAIRÉ
Fruit contains Betanin (major), Isobetanin, Phyllocactin & Isophyllocactin PIATTELLI & IMPERATO 1969
See comment in Activity Notes.

Opuntia stricta (HAW.) HAW. var. 7 was reported by MEYER et al. 1980 to contain unidentified alkaloids.
“Opuntia stricta” extract. Stable as a natural food pigment. Was suggested to be a good commercial choice due to betanin concentrations and low pH. CASTELLAR et al. 2006. CASTELLAR et al. 2003 had reported 80 mg betanin /100 g fresh fruit.

Opuntia stricta (HAW.) HAW. var. dillenii (KER-GAWLER) L. BENSON
Arabinogalactan (a polysaccharide composed of L-Arabinose & D-Galactose 1:3) isolated from dried fruit in 0.5% yield. SRIVASTAVA & PANDE 1974
Known as Xian Ren Zhang in Chinese.

Qiu isolated (from aqueous ethanolic extract of fresh stems): Opuntioli (0.0032%)
p-Hydroxybenzoic acid (0.0023%)
L-(--)-Malic acid (0.00019%)
Opuntioside I (0.078%) [an α-pyrene]
3,3’-Dimethylquercetin (0.00019%)
Ferulic acid (0.00053%)
4-Ethoxyl-6-hydroxymethyl-α-pyrene (0.00013%)
1-Heptanecanol (0.0019%)
Vanillic acid (0.00035%)
Isorhamnetin-3-O-rutinoside (0.0070%)
Rutin (0.00014%)
Kaempferol 7-O-β-D-glucopyranosyl(1→4)-β-D-glucopyranoside (0.00015%)
3-O-Methyl quercetin 7-O-β-D-glucopyranoside (0.00015%)
Kaempferol 7-O-β-D-glucopyranoside (0.00019%)
Manghaslin (0.003%) Ethyl 3,4-dihydroxybenzoate (0.00014%)
3,4-Dihydroxybenzoic acid (0.00041%)
(all % as dry weights)
Plant material was harvested in Hainan, China QIU et al. 2002

Earlier (in 2000) Qiu had isolated:
Quercetin
3-O-Methyl quercetin
Kaempferol
Kaempferide
Isorhamnetin
β-Sitosterol

(from QIU et al. 2002 citing QIU et al. 2000)

Opuntisterol [(24R)-24-ethyl-5β-cholest-9-ene-6β,12α-diol] (a novel C29-5β-sterol)
Opuntisteroside [(24R)-24-ethyl-6β-[β-D-glucopyranosyl(1→5)-5β-cholest-9-ene-12α-ol] (a novel C29-5β-sterol)
β-Sitosterol
Taraxerol
Friedelin
Methyl linoleate
7-Oxositosterol
6β-Hydroxystigmast-4-ene-3-one
Daucosterol
Methyl eucomate
Eucomic acid

Jiang et al. 2006
Isolated from stems collected in Guizhou Province, China.

Isorhamnetin-3-O-galactoside
Isorhamnetin-3-O-glucoside
Orientin (Luteolin 8-C-glucoside)
Quercetin-3-O-rhamnoside (Quercetrin)
Vitexin (Apigenin 8-C-glucoside)

Gupta et al. 202
Isolated from stems growing in India.

Flavonoid glycosides isolated from the combined flowers, fruit & stems were identified as:
Kaempferol 3-O-α-arabinoside
Isorhamnetin-3-O-glucoside
Isorhamnetin-3-O-rutinoside

Ahmed et al. 2005
Material was harvested in Egypt.

<table>
<thead>
<tr>
<th>Compound</th>
<th>pulp</th>
<th>seed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betanin</td>
<td>18.2 ± 1.8</td>
<td>15.7 ± 1.8</td>
</tr>
<tr>
<td>Isobetanin</td>
<td>19.1 ± 0.1</td>
<td>19.2 ± 1.0</td>
</tr>
<tr>
<td>Ascorbic acid</td>
<td>15.1 ± 0.6</td>
<td>1.2 ± 0.1</td>
</tr>
<tr>
<td>Catechin</td>
<td>22.7 ± 0.7</td>
<td>18.0 ± 0.2</td>
</tr>
<tr>
<td>p-Coumaric acid</td>
<td>nd</td>
<td>0.6 ± 0.0</td>
</tr>
<tr>
<td>Epicatechin</td>
<td>10.9 ± 0.2</td>
<td>17.1 ± 0.1</td>
</tr>
<tr>
<td>Ferulic acid</td>
<td>nd</td>
<td>4.0 ± 0.1</td>
</tr>
<tr>
<td>Gallic acid</td>
<td>2.7 ± 0.03</td>
<td>4.0 ± 0.6</td>
</tr>
<tr>
<td>Quercetin</td>
<td>nd</td>
<td>4.6 ± 0.1</td>
</tr>
<tr>
<td>Rutin</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Sinapinic acid</td>
<td>nd</td>
<td>nd</td>
</tr>
</tbody>
</table>

nd = below detection limits

Chang et al. 2008

Opuntia tomentella BERGER
Fruit contains Betanin (major), Isobetanin, Phyllolocatin and traces of Isophyllolocatin PIATTELI & IMPERATO 1969

Opuntia tomentosa SALM-DYCK
Citric acid (1.2% in stem juice)
Hegnauer 1964 cited Bergström 1934
Fruit contains Betanin (major), Isobetanin, Phyllolocatin and traces of Isophyllolocatin PIATTELI & IMPERATO 1969

Opuntia violacea ENGELMANN VAE macrocentra (ENGELMANN) L.Benson
See as Opuntia macrocentra ENGELMANN

Opuntia vulgaris MILLER
Hordenine (%?) DeVries et al. 1971
Opuntin B (new alkaloid)
4-Hydroxyproline
Tyrosine

Jiang et al. 2003
β-Sitosterol (used whole plant) ANJANEYULU et al. 1965.
Ascorbic acid & Dehydroascorbic acid.
Friedelin (0.01% dry wt.), Friedelan-3α-ol (0.001% dry wt.), Taraxerone (0.0025% dry wt.) & Taraxerol (0.005% dry wt.): (triterpenoids). CHATTERJEE et al. 1976.
Fruit contains betacyanins: Betanin (major) & Isobetanin.
PIATTELI & MINALE 1964
Reported to show the presence of waxy materials and some sort of a rubber in the studies of De Graffe 1896.
Horschette 1929
See comment in Activity Notes.

Opuntia wilcoxii
Flavanol production in was found to be largely reduced when grown in the absence of UV rather than in sunlight.
BERGER et al. 2007

Pachycereus calvus (Watson) Britton & Rose
See as Pachycereus pringlei

Pachycereus chrysomallus (Lemaire) Britton & Rose
Traces of unidentified triterpene(s). DIERASSI 1957 cited unpublished observations by DIERASSI & MARFAY

Pachycereus gaumeri Britton & Rose
See as Pterocereus (?) gaumeri

Pachycereus gigas (Backeborg) Backeborg
See as Pachycereus weberi

Pachycereus grandis Rose
Glucaric acid (a lactone-forming acid) (tlc)
Isocitric acid (a lactone-forming acid) (tlc & glc)
KRINGSTAD & NORDAL 1975

Pachycereus hollianus (Weber) Buxbaum
See as Lemaireocereus hollianus

Pachycereus marginatus (DeCandolle) Britton & Rose
AKA “órgano”
Pilocereine Over 0.076% [fresh wt] (Additional alkaloid was obtained but it is unclear how much was pilocereine and what was unidentified material) DIERASSI et al. 1954c
[Collected from wild: State of Hidalgo, Mexico] AGURELL 1969b also appears listed as a reference. He mentioned this species in passing but did not analyze it.
Lophoereine was reported in mass fragmentography by LINDGREN et al. 1971 [DIERASSI et al. 1954c, also appears listed as a reference but did not report this alkaloid.]
Unidentified alkaloids also present. Dierassi et al. 1954c (Dierassi reported no detectable triterpenes)

isosalolone (trace) Bruhn & Lindgren 1976 [Material from Michoacan, Mexico].

3-Hydroxy-4-methoxyphenethylamine (1-10% of 1-10 mg of total alcaloid/ 100 gm fresh) Agurell et al. 1971b; [Obtained via commercial sources in Germany & the Netherlands]; Strombom & Bruhn 1978 could not detect this alkaloid; nor did Bruhn & Lundstrom 1976b [Both used material collected from wild: Michoacan, Mexico].

3-Methoxytyramine (detected) Strombom & Bruhn 1978 [Sole phenethylamine they reported (major alcaloid in the phenolic fraction).]

arizone (detected) Strombom & Bruhn 1978

carnegine [Heyl 1928 isolated and named Pectenine (pectenit); it was shown by Spat & Kuffner 1929 to be identical to Carnegine] (However, Agurell et al. 1971b & Bruhn & Lindgren 1976 & Strombom & Bruhn 1978 could NOT detect carnegine.) [Possibly detected by Unger et al. 1980 but MIKES does not differentiate between aromatic isomers.]

Heliamine (Minor: 22 mg from 4.3 kg fresh [as HCl]) Strombom & Bruhn 1978

Isosalolone (detected) Strombom & Bruhn 1978

Salolone (detected) Strombom & Bruhn 1978

Salolone (Major alcaloid: (at 28 mg from 4.3 kg fresh) by Bruhn & Lindgren 1976 & by Strombom & Bruhn 1978 [Unger et al. 1980 DID NOT detect Salsolidine (using MIKES)]

Agurell et al. 1971b noted that other alkaloids were present but reserved presenting details for a later paper that we have not been able to locate (citing it as "Kapadia & Agurell")

Quinieic acid (tlc & gle by Kringsstad & Nordal 1975)

Unger et al. 1980 reported N-Methylheliamine, Weberidine & N-Methylpachycerine using MIKES. They also reported 4 other quinoline alkaloids but it is unclear which isomers were actually detected.

Pachycereus pringlei (S.Wats) Br. & R.

AKA "saguasa" or the "elephant cactus"

This species is most commonly called "cardon" (a name that is also used for many other Cereoids)

3,4-Dimethoxyphenethylamine (gc-ms) ["not yet rigidly proven"]

Carnegine (gc-ms)

N-Methylheliamine (gc-ms)

Crockett & Shulgin 1999 (Personal communication; unpublished findings)

N-Methylmescaline (gc-ms) Shulgin 2001 (personal conversation)

Heliamine (0.017% by dry wt)

Lemaireocereine (Detected)

Tehuanine (0.05% dry wt.)

Weberine (Detected)

Mata & McLaughlin 1980d

Tehuanine-N-oxide (0.014% yield by dry wt.) Pumanguna et al. 1982b

Glucarylic acid (tlc by Kringsstad & Nordal 1975)

Isosalolone (tlc & gle by Kringsstad & Nordal 1975)

[Unger et al. 1980 reported 5, possibly 6, quinoline alkaloids. Two were identified, as N-Methylheliamine and Weberidine, but we could not determine the isomeric identities of the others. All by MIKES.]

See comments in Activity Notes.

Pachycereus quercetangicus (Weber) Br. & Rose See as Lemaireocereus quercetangicus

Pachycereus schottii (Engelmann) Hunt See as Lophocereus schottii

Pachycereus sp. (unidentified; collected in Mexico) was reported to show a very strong preliminary alkaloid screening but only gave positive results in the confirmatory tests for quaternary alkaloids. Smolenski et al. 1972

Pachycereus tehuantepecanus T.MacDougal & H.Bravo

[Backeberg considered this species to be synonymous with Pachycereus pecten-aborignum.]

Tepenine (no details)

Tehuanine (no details)

Lundstrom 1983 & Mata & McLaughlin 1980d cited Weisborn (personal communication 1978: Unpublished data). Kapadia et al. 1970c mentions that J. Weisborn (at Squibb) first presented this in a discussion during the 5th Ann. Meeting of the American Society of Pharmacognosy June 22-25, 1964 (Pittsburgh, PA) and that it was planned for publication submission. It evidently never was.

Pachycereus tetezo (A.Wel.) Ochot. See as Cephalocereus tetezo

Pachycereus thurberi Br. & Rose See as Lemaireocereus thurberi

Pachycereus weberi (Coulter) Backeberg

AKA "candelalbro" & "cardon"

Anhalidine (no quantification) Roush et al. 1985

Anhalidine (0.01% dry wt.) Dierassi et al. 1954c. (traces)

Mata & McLaughlin 1980c; (NOT observed by Roush et al. 1985)

O-Methylpellotine (no quantification) Roush et al. 1985; Unger et al. 1980

Pellotine (0.0005% dry wt.) Mata & McLaughlin 1980c; (no quantification) Roush et al. 1985.
5,6,7-TriMeO-THIQ (Nortehuanine) (0.0095% [as HCl] dry wt.) Mata & McLaughlin 1980c; (no quantification) Roush et al. 1985

7,8-DiMeO-THIQ (Lemaireocereine) (0.003% [HCl] dry wt.) Mata & McLaughlin 1980c; (no quantification) Roush et al. 1985 [Pumamangura & McLaughlin 1981a used this species as the source of their reference material for Lemaireocereine]

7-MeO-THIQ (Weberidine) (0.00024% dry wt.) Mata & McLaughlin 1980c; (no quantification) Roush et al. 1985

Two other THIQs were reported by Roush et al. 1985 [Pumamangura & McLaughlin 1981a used this species as the source of their reference material for Lemaireocereine]

7,8-DiMeO-THIQ (Lemaireocereine) (0.003% [HCl] dry wt.) Mata & McLaughlin 1980c; (no quantification) Roush et al. 1985 [Pumamangura & McLaughlin 1981a used this species as the source of their reference material for Lemaireocereine]

7-MeO-THIQ (Weberidine) (0.00024% dry wt.) Mata & McLaughlin 1980c; (no quantification) Roush et al. 1985

Parodia mutabilis Backebeg

Parodia procera Ritter

Volatile compounds in floral scent have been studied. Dehydrogoesmin - Minor volatile in floral scent. Sesquiterpene alcohol 1 - Trace volatile in floral scent. Sesquiterpene alcohol 2 - Minor volatile in floral scent. Schllumberger et al. 2004 (in tepals; gc-ms)

Parodia sanguiniflora Backebeg

Parodia streuneri (Werdermann) Backebeg

Parodia tuberculosa Cardenas

Pelecyphora aselliformis Ehrenberg

“peyote”, “peyotillo” Standley 1924: 973

62% water by weight. Neal et al. 1972 [300 dried plants weighted 5.5 kg]

Tyramine (Less than 0.0001% [fresh wt]) Starcha 1994 [Seed grown in Czechoslovakian greenhouses]

N-Methyltyramine (0.0002% [fresh wt]) Starcha 1994

Hordenine (10-50% of the 1-10 mg of total alkaloids/ 100 grams fresh) Agurell et al. 1971b [Obtained via commercial source in the Netherlands]; (10-50% of 10-50 mg of total alkaloids/ 100 gm. fresh. Not major alkaloid.) Bruhn & Bruhn 1973; (Major alkaloid. 0.00063% dry wt.) Neal et al. 1972; (0.0007% [fresh wt]) Starcha 1994

3,4-Dimethoxyphenethylamine (trace) Neal et al. 1972; (0.0002% [fresh wt]) Starcha 1994

N-Methyl-3,4-dimethoxyphenethylamine (trace) Neal et al. 1972

N,N-Dimethyl-3-hydroxy-4,5-dimethoxy-phenethylamine (0.00018% dry wt.: Minor alkaloid) Neal et al. 1972; (10-50% of 10-50 mg of total alkaloids/ 100 gm. fresh: Major alkaloid) Bruhn & Bruhn 1973.

Mesaline (Less than 0.0002% dry wt.) Neal et al. 1972 [Plants obtained commercially. Not indicated if field collected or seed grown]; (0.0003% dry wt.) Siniscalco 1983 [Plants was cultivated in Italy]; (Less than 0.0001% [fresh wt]) Starcha 1994. Not observed by other workers (including Agurell et al. 1971b [Material cultivated in Europe] & Bruhn & Bruhn 1973 [Material was field collected in Mexico].

N-Methylmesaline (trace) Neal et al. 1972

Anhalidine (0.000067% dry wt.) Neal et al. 1972; (10-50% of 1-10 mg total alkaloids per 100 grams of [fresh wt]) Agurell et al. 1971b & Bruhn & Bruhn 1973; (Less than 0.0001% [fresh wt]) Starcha 1994

Pachycereus weberi was reported to show positive results in the alkaloid screenings of Feng et al. 1972 [3-OH-4-MeO-PEA is listed in error, the reference cited, Smith 1977, does not mention this species.]

Djerassi et al. reported no detectable triterpene.

Leinmarin (0.018% yield by dry wt.) (a glucoside) Mata & McLaughlin 1980a

Glicaric acid (talc by Kringstad & Nordal 1975)

Isocitric acid (talc & glc by Kringstad & Nordal 1975)
Cactus Chemistry: By Species

Pellotine (0.000009% dry wt.) Neal et al. 1972; (Less than 0.0001% [fresh wt]) Štárha 1994
[PEA, N-Me-PEA, 4-MeO-PEA and N-Me-4-MeO-PEA have been erroneously listed for Pelecyphora aselliformis. The cited reference, Neal et al. 1972, ran these 4 alkaloids as their dansyl-derivatives using pure reference compounds. They were NOT found in the plant.]
Unidentified alkaloids reported by Reko 1928.
Quinic acid (tlc & glc by Kringstad & Nordal 1975)

Pelecyphora pseudopepactinata BACKEBERG
See as *Turbinicarpa pseudopepactinata*

Peniocereus fosterianus CUTAK
Chichipegenin (a terpene) (in stem)
Peniocerol (1% by dry wt. in root) (a sterol: cholest-8-en-3β,6α,7α-triol)
Dierassi et al. 1961 [From State of Colima, Mexico]

Peniocereus greggii & *Peniocereus striatus*
See comment under Activity Notes

Pereskia aculeata MILLER
“grosellero” (Cuba), “Barbados gooseberry”, “Spanish Gooseberry” STANDLEY 1924
Tyramine (no quantification) Doetsch et al. 1980
Citric acid (2.3% in stem juice) Hegnauer 1964 cited Bergström 1934
Betalains. Wohlfart & Mabry 1968 cited Dreiding 1961. All CO₂ uptake occurred during the day through the stems (under well watered conditions) Nobel & Hartsock 1986
Cholesterol (2.5% of total sterols)
24α-Methylcholesterol (18.7% of total sterols)
Stigmasterol (6.3% of total sterols)
Sitosterol (72.5% of total sterols)
Salt et al. 1987

Pereskia autumnalis (Echlam) ROSE
Phenethylamine (no quantification)
Tyramine (no quantification)
Doetsch et al. 1980

Pereskia bleo DC
Reported to contain Quercetin & Kaempferol (Flavonols) Richardson 1978 (based on acid hydrolysis)

Pereskia corrugata CUTAK
Tyramine (no quantification)
3,4-Dimethoxyphenethylamine (0.0009%)
3-Methoxytyramine (no quantification)
Mescaline (0.0005% dry wt.)
Doetsch et al. 1980

Pereskia cubensis BRITTON & ROSE
Tyramine (no quantification) Doetsch et al. 1980

Pereskia godseffiana (Sandwith) KNUTH
Tyramine (no quantification) Doetsch et al. 1980

Pereskia grandiflora HORT.
Tyramine (no quantification)
β-Hydroxymescaline (no quantification)
Doetsch et al. 1980
Betalamic acid in flowers. Piattielli 1981 cited Chang et al. 1974 but this reference is incorrect as they only investigated Portulaca grandiflora. [A number of color forms and F1 hybrids have been surveyed for betalains. Piattielli 1981 cited Ontani & Hagihara 1969. This reference has not been located but it too may also be suspect]

Pereskia grandifolia HAWORTH
Tyramine (no quantification)
3-Methoxytyramine (no quantification)
4-Methoxy-β-hydroxyphenethylamine (no quantification)
Doetsch et al. 1980
Flowers contains Betanin (major), and an unidentified Betacyanin. Also traces of Isobetanin & Phylloclactin Piattielli & Imperato 1969 [As Rhodocactus grandifolius (Haw.) Knuth]. Reported to contain Quercetin & Kaempferol (Flavonols) Richardson 1978 (based on acid hydrolysis)
All CO₂ uptake occurred entirely during the day through the leaves (under well watered conditions)
Nobel & Hartsock 1986

Pereskia grandifolia fruit reported to contain a saponin of oleanolic acid. Methyl oleanolate was found to be the sapogenin with D-Glucose and D-Glucuronic acid as the sugars. Sahu et al. 1974

Pereskia pititache (Karwinsky) BRITTON & ROSE
Phenethylamine (no quantification)
Tyramine (no quantification)
Doetsch et al. 1980

Pereskia tampicana WEBER
Phenethylamine (no quantification)
Tyramine (no quantification)
3,4-Dimethoxyphenethylamine (0.0025%)
4-Methoxy-β-hydroxyphenethylamine (no quantification)
Mescaline (0.0013% dry wt.)
Doetsch et al. 1980
[3-MeO-β-hydroxy-PEA has been listed in error. The cited reference, Doetsch et al. 1980, did not report this compound.]

Pereskia chapistitia (Weber) BRITTON & ROSE
“chapistitia” STANDLEY 1924
Phenethylamine (no quantification)
Tyramine (no quantification)
4-Methoxy-β-hydroxyphenethylamine (no quantification)
3-Methoxytyramine (no quantification)
Doetsch et al. 1980

Pereskia porteri (Brandegee) BRITTON & ROSE
“alcajér” (Baja California) STANDLEY 1924
Reported to contain Kaempferol (a Flavonol) Richardson 1978 (based on acid hydrolysis)
88% of the CO₂ uptake occurred during the day through the leaves (under well watered conditions)

Nobel & Hartsock 1986

Pereskioipsis scandens Brittton & Rose

Tyramine (no quantification)

3,4-Dimethoxyphenethylamine (0.0029%)

Mescalin (0.0022% dry wt.)

Doetsch et al. 1980

Phyllocactus ackermannii Link See as *Nopaleochia ackermannii*

Phyllocactus hybridus

Flower contains betacyanins: Betanin (major), Isobetanin,
Phyllocactin & Isophyllocactin. Pieattelli & Minale 1964a & 1964b (Also Minale et al. 1966 [Collected near Naples, Italy])

Pilocereus chrysanthus Weber

N-Methyl-3,4-dimethoxyphenethylamine (Major alkaloid. 0.006% fresh) Bruhn & Sánchez-Mejorada 1977 [Wild collected; Puebla, Mexico]

Reported as showing no detectable alkaloids in the screenings of FONG et al. 1972

Quinic acid (tlc, glc & gc-ms by Kringstad & Nordal 1975)

Pilocereus chrysomallus Lemaire See as *Buckebergia militaris*

Pilocereus euphorbioides (HAW.) Rümpler See as Neobuxbaumia euphorbioides

Pilocereus gaumeri (Br. & R.) Knuth is NOT synonymous with Pterocereus (?) gaumeri

Pilocereus giganteus Rümpler See as *Carnegiea gigantea*

Pilocereus glaucescens Labouret See as *Cephalocereus glaucescens*

Pilocereus gounellei (Weber) Byles & Rowley

“alastrado”

Unconfirmed report of caffeine (0.15-0.22%) in its seeds. Hégnaur 1964 & Mata & McLaughlin 1982 cited Freise 1935. This alkaloid identification is highly questionable.

Pilocereus guerreronis (Backeb) Byles & Rowley

N-Methyl-3,4-dimethoxyphenethylamine (~ 0.042% (~60% of 0.07% total alkaloid) [fresh wt] Recovered 0.012%.)

N-N-Dimethyl-3,4-dimethoxyphenethylamine (approximately 0.025% fresh wt. (~35% of 0.07% total alkaloid) Recovered 0.044% as pure compound.

O-Methylcorypaline (i.e. N-Methylheliamine) (trace) Lindgren & Bruhn 1976 [Wild collected; Guerrero, Mexico]

Pilocereus leucocephalus Poselger See as *Cephalocereus leucocephalus*

Pilocereus maxonii (Rose) Knuth

Tyramine (trace)

N-Methyltyramine (trace)

N-Methyl-3-methoxytyramine (0.002% dry wt.)

N,N-Dimethyl-3-methoxytyramine (0.004% dry wt.)

3,4-Dimethoxyphenethylamine (trace)

N-Methyl-3,4-dimethoxyphenethylamine (trace)

PUMMANGURA et al. 1977.

Pilocereus nobilis Haworth See as *Cephalocereus nobilis*

Pilocereus pasacana Weber See as *Trichocereus pasacana*

Pilocereus sargentianus Orcutt See as *Lophocereus schottii*

Pilocereus schottii (Engelman) Lemaire See as *Lophocereus schottii*

Pilocereus schottii Lemaire See as *Lophocereus schottii*

Pilocereus senilis (Haw.) Pfeiffer See as *Cephalocereus senilis*

Pilocereus thurberi Rümpler See as *Lemaireocereus thurberi*

Pilosocereus chrysacanthus (Weber) Byles & Rowley See as *Pilocereus chrysacanthus*

Pilosocereus gaumeri (Br. & R.) Backeb is NOT synonymous with Pterocereus (?) gaumeri

Pilosocereus glaucescens (Larl.) Byles & Rowley See as *Cephalocereus glaucescens*

Pilosocereus guerreronis (Backeb.) Byles & Rowley See as *Pilocereus guerreronis*

Pilosocereus leucocephalus (Poselger) Byles & Rowley See as *Cephalocereus leucocephalus*

Pilosocereus maxonii (Rose) Byles & Rowley See as *Pilocereus maxonii*

Pilosocereus nobilis (Haw.) Britton & Rose See as *Cephalocereus nobilis*

Polaskia chende (Gosselin) Gibson & Horak

“chende”, “chente”, “chinioa” STANDELEY 1924: 899

3,4-Dimethoxyphenethylamine (less than or around 0.01% dry wt.) MA et al. 1986

4-Hydroxy-3,5-dimethoxyphenethylamine (Around 0.01% dry wt.) MA et al. 1986

Mescalin (Around or less than 0.01%) MA et al. 1986

Oleanolic acid

Oleanolic aldehyde

Erythrodiol

SHAMMA & ROSENSTOCK 1959 (didn’t include starting weight)

Strongly positive in alkaloid screening of FONG et al. 1972

Oleanolic acid & Chichipegenin were reported to be present. GIBSON & HORAK 1978 cited BRAVO & COX 1958

Polaskia chichipe (Gosselin) Backeb

“chichipe”, “chichibe” STANDELEY 1924: 898

69.8% water by wt.

Reported no detectable alkaloids.

Oleanolic acid (as 0.008% dry wt via its methyl ester)

Chichipegenin (a triterpene & tetrol) (0.083% dry wt.) SANDOVAL et al. 1957 [Wild collected; Puebla, Mexico]

Longispinogenin GIBSON & HORAK 1978 cited DIERASSI 1957

Pseudolobivia kermesina Krainz

Tyramine (0.0002% dry wt.)

3,4-Dimethoxyphenethylamine (trace)

FOLLAS et al. 1977
Cactus Chemistry: By Species

Pterocereus foetidus Th. MacDougall & F. Miranda
3,4-Dimethoxyphenethylamine (around 0.01% dry wt.)
4-Hydroxy-3,5-dimethoxyphenethylamine (Less than 0.01% dry wt.)
Ma et al. 1986

Pterocereus (?) gaumeri (Britton & Rose) Th. MacDougall & F. Miranda
[Given by MacDougall & Miranda as a provisional name]
3,4-Dimethoxyphenethylamine (less than or around 0.01% dry wt.)
4-Hydroxy-3,5-dimethoxyphenethylamine (Around or less than 0.01% dry wt.)
Mescaline (Less than 0.01%)
Ma et al. 1986

Puná clavarioides (Pfeiffer) Whewellite was identified as druses.
Monje & Barán 2002

Pyrrhocactus strausianus (Schumann) Backebég
Weddellite was identified as druses, prisms & crystal sand.
Monje & Barán 2002

Quiabentia chacoensis Backebég
Reported to contain Quercetin (a Flavonol)
Richardson 1978 (based on acid hydrolysis)
88% of the daily CO₂ uptake occurred through the leaves during the daytime but some occurred at night (under well watered conditions)
Nobel & Hartsock 1986

Rauhocereus riosanienis Backebég needs an analysis.

Rathbunia alamosensis (Coulter) Britton & Rose See as Stenocereus alamoensis

Rebutia arenacea Cárdenas
Dehydrogeosmin - Major volatile in floral scent.
Sesquiterpene alcohol 1 - Minor volatile in floral scent.
Sesquiterpene alcohol 2 - Minor volatile in floral scent.
Schumberger et al. 2004 (in tepals; gc-ms)

Rebutia fabrisii Rausch
Emission rates varied up to 12-fold between individuals
Dehydrogeosmin - Major volatile in floral scent.
Sesquiterpene alcohol 1 - Minor volatile in floral scent.
Schumberger et al. 2004 (in tepals; gc-ms)

Rebutia krainziana W. Kesselring

Rebutia margaretae Rausch
Weddellite was identified as druses.
Monje & Barán 2002

Rebutia marsoneri Werdermann
Dehydrogeosmin - Major volatile in floral scent.
Sesquiterpene alcohol 1 - Minor volatile in floral scent.
Sesquiterpene alcohol 2 - Minor volatile in floral scent.
Schumberger et al. 2004 (in tepals; gc-ms)

Rebutia miniscula K. Schumann

Rebutia pseudodeminuta Backebég
AKA “Wallflower-crown”

Rebutia senilis Backebég
AKA “Fire-crown cactus”

Rhapisal capilliformis Weber
Citric acid (3.5% in stem juice) Hegenauer 1964 cited Bergström 1934

Rhapisal baccifera (JS Mueller) Stearn is listed as containing unidentified alkaloid(s) by Shulgin & Shulgin but no reference was included.

Rhapisal capilliformis Weber
Citric acid (2.2% in stem juice) Hegenauer 1964 cited Bergström 1934

Rhapisal cassytha Gaertner
Citric acid (2.9% in stem juice) Hegenauer 1964 cited Bergström 1934
Listed as containing unidentified alkaloid(s) by Shulgin & Shulgin but no reference was included.
See comment in Activity Notes.

Rhapisal conferta Salm-Dyck
See comment in Activity Notes.

Rhapisal gaertneria var. Mackoy
Citric acid (2.9% in stem juice) Hegenauer 1964 cited Bergström 1934
Rhipsalis juengeri Barthlott & N.P.Taylor
(% = Relative percent of total)
10-Methylundecan-2-one (36.0%)
Undecan-2-one (26.95%)
Unidentified: possibly Methyl undecenone (12.3%)
8-Methylnonan-2-one (1.918%)
Linalool (1.86%)
Styrene (2.4%)
Heptan-2-one (1.2%)
6-Methylhept-2-one (0.4%)
9-Methyldecanal (0.217%)
Nonanal (0.2%)
Nonanone-2 (0.86%)
2-Undecanone (0.53%)
8-Methylnonanol (0.494%)
Benzaldehyde (0.352%)
6-Methylhept-5-en-2-one (0.19%)
Hexadecane (0.133%)
Heptan-2-one (0.12%)
Heptadecane (0.115%)
Octan-2-one (0.1%)
Benzyl acetone (0.097%)
Octanal (0.072%)
Benzyl acetate (0.067%)
Benzyl alcohol (0.064%)
Oct-1-en-3-ol (0.059%)
Tridecan-2-one (0.035%)
Octanol (0.035%)
Dodecane (0.034%)
Naphthalene (0.03%)
Decan-2-one (0.023%)
trans-Anethole (trace)
α-Cedrene (trace)
Coumarin (trace)
p-Cymene (trace)
Limonen (trace)
3-Methylbut-2-enyl acetate (trace)
Methyl decanoate (trace)
Methyl salicylate (trace)
Phenoxethanol (trace)
α-Pinene (trace)
α-Selinene (trace)
Schlumberger et al. 2006

Rhipsalis mesembryanthemoides Standl.
Mesembenyranthemoidigenic acid (0.36%) (A dihydroxy triterpene acid) Tursch et al. 1965 [Collected in the State of Guanabara, Brazil]

Rhipsalis paradoxa Salm-Dyck
Citric acid (2.3% in stem juice) Hegnauer 1964 cited Bergström 1934

Rhipsalis regnellii Lindb.
Citric acid (4.5% in stem juice) Hegnauer 1964 cited Bergström 1934

Rhipsalis rhombea Pfeiffer
Citric acid (1.6% in stem juice) Hegnauer 1964 cf. Bergström 1934

Rhipsalis teres (Vellozo) Steudel.
Appears listed as containing unidentified alkaloid(s) but either the entry included no reference or else the reference that was cited (Brown et al. 1968) did not mention the species.

Rhipsalis virgata Weber
Citric acid (1.8% in stem juice) Hegnauer 1964 cf. Bergström 1934

Rhipsalis warmingiana K. Schumann
Citric acid (3.1% in stem juice) Hegnauer 1964 cf. Bergström 1934

Listed as containing unidentified alkaloid(s) by Shulgin & Shulgin but no reference was included.

Rhodocactus spp. See as Pereskiopsis spp.

Ritterocereus griseus (Haworth) Backeb erg
See as Lemaireocereus griseus

Ritterocereus hystrix (Haworth) Backeb erg
See as Lemaireocereus hystrix

Ritterocereus montanus (Britton & Rose) Backeb erg
See as Stenocereus montanus

Ritterocereus pruinosus (Otto) Backeb erg
See as Lemaireocereus pruinosus

Ritterocereus queretaroensis (Weber) Backeb erg
See as Lemaireocereus queretaroensis

Ritterocereus weberi (Coulter) Backeb erg
See as Pachycereus weberi

Rooksbya euphorbioides (Haworth) Backeb erg
See as Neobuxbaumia euphorbioides

Roseocactus fissuratus See as Ariocarpus fissuratus

Roseocereus tephrocatus (Lar.) Backeb erg = Trichocereus tephrocatus
No analysis reported but one seems needed.

Schlumbergera bridgesii (Lemaire) Loefgren
Cholesterol (traces)
Avenasterol (8.5% of total)
24-α-Methylcholesterol (10.2% of total)
Sitosterol (81.3% of total)
Salt et al. 1987
Listed as containing unidentified alkaloid(s) by Shulgin & Shulgin but no reference was included.

Schlumbergera russelliana (Hooker) Britton & Rose
Listed as containing unidentified alkaloid(s) but either the entry included no reference or else the reference that was cited (Brown et al. 1968) did not mention the species.

Schlumbergera truncata (Haworth) Moran
Analyzed as Zygocactus truncatus (Haworth) Schumann “Christmas Cactus”
Cactus Chemistry: By Species

[It was found to contain no Isocitric acid by SODESTROM 1962.]
Reported to contain Betalains as pigments. WOHLPART & MABRY 1968 cited DREIDING 1961.
Also caffeic acid. AARDVARK 2006 cf. SCHULTES & RAFFAUF 1990

Selenicereus pteranthus (L.K. & O.) Br. & R.
Hordenine (0.002% dry wt.) PETERSHOFER-HALMBEYER et al. 1982
Soehrensia bruchii (Br. & R.) BACKEBERG see as Trichocereus bruchii

Solisia pectinata (B. STEIN.) BRITTON & ROSE
N-Methlytyramine (10-50% of 10-50 mg of total alkaloids/ 100 gm. fresh.)
Hordenine (Over 50% of 10-50 mg of total alkaloids/ 100 gm. fresh.)
BRUHN & BRUHN 1973
Solisia pseudopectinata BACKEBERG
See as Pelecyphora pseudopectinata

Stenocactus multistatus (HILDMANN) A. BERGER
See as Echinofossulocactus multistatus

Stenocereus alamosensis (COULTER) A. GIBSON & HORAK
AKA “cina” or “sina”
Interestingly, this analysis suggests that this species might be better grouped with the species we have listed under *Lemaireocereus*.
Oleanolic acid was reported to be present. GIBSON & HORAK 1978 cited BIRD 1974
Gummoside A methyl ester
Gummoside A
KAKUTA et al. 2012
Kircher 1982 lists Longispinogenin as being present in higher concentrations than in Machaerocereus gummosus and the sterol diols being lower. Gummosogenin, Machaeric acid and Machaerinic acid also present but no details included.
HPLC examination showed no detectable alkaloids and the very strong presence of triterpene glycosides: Kircher 1982
Lipid content was 5.6% by dry weight: Kircher 1982
See comment in Activity Notes.

Stenocereus beneckeii (EIRENBERG) BUXBAUM
3,4-Dimethoxyphenethylamine (less than or around 0.01% dry wt.) MA et al. 1986 (HBG 32973)
4-Hydroxy-3,5-dimethoxyphenethylamine (Around 0.01% dry wt.) MA et al. 1986
Mescaline (Less than 0.01%). MA et al. 1986
Queretaroic acid (A dihydroxy triterpene acid; in hydrolyzed saponin) No isolation details included. DIERASSI et al. 1955a. [Also isolated by DIERASSI et al. 1956b]
Lupenone (wax component) (0.12% by dry wt) KINOSHITA et al. 1992 (Also by WOLLENWEBER & DORR 1995)
Lupeol (wax component) (0.04% by dry wt) Kinoshita et al. 1992 (Also by Wollenweber & Dörr 1995)
Oleanolic acid (detected; in hydrolyzed saponin) Djerassi et al. 1956b
β-Amyrin (In the surface wax; in a 1:1:3 ratio with Lupeol & Lupeone) [Grown in Germany] Wollenweber & Dörr 1995

Stenocereus chende (Gosselin) Byles & Rowley
See as Polaskia chende
Stenocereus chichipe (Gosselin) Byles & Rowley
See as Polaskia chichipe
Stenocereus dumortieri (Scheidw.) Buxbaum
See as Lemaireocereus dumortieri

Stenocereus erucu (Brandegee) Gibson & Horak
“chirinola”, “chirinole”, “chilenola” Standley 1924;
3,4-Dimethoxyphenethylamine (less than 0.01% dry wt.) Ma et al. 1986 (Baja, Mexico; AC Gibson 3625)
4-Hydroxy-3,5-dimethoxyphenethylamine (Around 0.01% dry wt.)? Ma et al. 1986
Mescaline (Less than 0.01% ?) Ma et al. 1986
Stellatogenin (a triterpene) 0.07% [fresh wt] (3.1 gm from 4.5 kg [fresh wt]) Djerassi et al. 1955b
Betulinic acid (a triterpene) (Identified as present via the methyl ester) Djerassi et al. 1955b.
Other compounds appeared to be present: Djerassi et al. 1955b.
(Analysis has usually been as Machaerocereus erucu)

Two lectins (MEAI and MEAII) were isolated and partially characterized. They were the first lectins to be isolated from cacti.
Zenteno et al. 1988

Zenteno described the purified lectins as being "glycoproteins containing 36% (MEA) and 24% (MEAII) of total carbohydrate, respectively. They do not contain stachic acid, but are rich in glucose, galactose, L-rhamnoand xylene; in addition, mannose is present as well as some L-arabinose in MEA!"

Betulinic acid
Machaerogenin (new) 111 mg from 67.8 g dry
Oleanolic acid
Stellatogenin
Thurberogenin
Koyama et al. 1993 (aerial parts)

A germanicane derivative:
3α,19β-dihydroxygermanican-28-oic acid (They named Machaeroceric acid.)
Three new lupane derivatives:
21-Ketobetulinic acid
16β-Hydroxybetulinic acid
22α-Hydroxystellatogenin
Four new triterpenes, Morolic acid Queretaroic acid

See comments in Activity Notes.

Stenocereus griseus (Haworth) Buxbaum See as Lemaireocereus griseus
Stenocereus gummosus (Brandegee) A. Gibson & Horak See as Machaerocereus gummosus
Stenocereus hystrix (Haworth) Buxbaum See as Lemaireocereus hystrix
Stenocereus longispinus (Br. & R.) Buxbaum See as Pachycereus marginatus
Stenocereus marginatus (De Candolle) Buxbaum See as Pachycereus marginatus
Stenocereus montanus (Britton & Rose) Buxbaum See as Lemaireocereus montanus

27-Deoxyphiliphyrigenin
Trelasegenic acid (3α-hydroxytaraxastan-28,20a-olide)
and four known triterpenes
Betulinic acid
Oleanolic acid
Stellatogenin
Thurberogenin
Yi et al. 1998

Oleanolic acid
Thurberogenin
Queretaroic acid
Trelasegenic acid
Machaerogenin
Morolic acid
Machaeroceric acid
21-Ketobetulinic acid
16β-Hydroxybetulinic acid
22β-Hydroxystellatogenin
Desoxyphiliphyrigenin
Stellatogenin
Betulinic acid
Yang et al. 1998

Two new triterpene saponins:
3-O-β-D-xylpyranosyl-(1→2)- β-D-glucopyranosyl-(1→2)- β-D-glucuronopyranosyl stellatogenin (They named it Stellatoside B.)
3-O-α-L-rhamnopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→3)]-β-D-glucuronopyranosyl betulinic acid 28-O-α-L-rhamnopyranosyl ester (They named it Erucasaponin A.)
Okazaki et al. 2007
Stellatoside C, D & E
Stellatoside B methyl ester
Stellatoside C methyl ester
Thurberoside A
Phillyriside A
Trelase side A
Kakuta et al. 2012 (all new triterpene saponins)

See comments in Activity Notes.
Stenocereus pruinosis (Otto) Buxbaum See as *Lemaireocereus pruinosis*

Stenocereus queretaroensis (Weber) Buxbaum See as *Lemaireocereus queretaroensis*

Stenocereus quevedonis (G.O. Ortega) Buxbaum See as *Lemaireocereus quevedonis*

Stenocereus stellatus (Pfeiffer) Riccobono

“tunila”, “joconostle” Standley 1924: 899

87.4% water by weight Dierassi et al. 1955b

3,4-Dimethoxyphenethylamine (around 0.01% dry wt.)

4-Hydroxy-3,5-dimethoxyphenethylamine (around 0.01% dry wt.)

Mescaline (0.01% dry wt.) Ma et al. 1986 (HBG 34963)

Stellatogenin (a neutral triterpene lactone (80% of neutral fraction); first isolation but not clear if S. eruca or S. stellatus was first) (2.2% by dry weight) [In another experiment in same paper they obtained 1.7% (crude)] Also in Koyama et al. 1993

Thurberogenin 15% of neutral fraction [Dierassi 1957 thought this might be an artifact] Also in Koyama et al. 1993

Oleanolic acid (0.001% by dry wt) (Isolated via the methyl ester) Also in Koyama et al. 1993

Betulinic acid (0.376% by dry wt) (Isolated via the methyl ester) Dierassi et al. 1955b [Collected: Mexico] Also Koyama et al. 1993

16-β-Hydroxystellatogenin (new) 24 mg from 52.9 gm dry.

Flower contains Betanin, Phyllocactin, (Stenocereus thurberi)

Species was reported as containing triterpenoid saponins but would not rule out possibility of traces of Betulinic acid. Dierassi et al. 1956a [Collected in Oaxaca, Mexico].

Treleasigenic acid (a triterpene) Dierassi & Mills 1958

Oxyallobetulin was also listed in Dierassi 1957 who thought this might be an artifact.

Stenocereus weberi (Coulter) Riccobono. See as Pachycereus weberi

Stemocereus thurberi (Engelmann) Backeb erg

See as *Lemaireocereus thurberi*

Stenocereus tereasei (Britton & Rose) Backeb erg

“tunila” Standley 1924: 899

82.6% water by weight

3,4-Dimethoxyphenethylamine (around 0.01% dry wt.)

4-Hydroxy-3,5-dimethoxyphenethylamine (around 0.01% dry wt.)

Mescaline (0.01% dry wt.) Ma et al. 1986

Stellatogenin 0.64% dry wt. [Also observed in Dierassi & Mills 1958]

Stetsonia coryne (Salm-Dyck) Britton & Rose

Tyramine (10-50% of 1-10 mg of total alkaloids/ 100 grams fresh)

N-Methyltyramine (1-10% of 1-10 mg of total alkaloids/ 100 grams fresh.

3-Methoxytyramine (Over 50% of the 1-10mg of total alkaloids/ 100 grams fresh)

3,4-Dimethoxyphenethylamine (trace)

Mescaline (0.1-1.0 mg. per 100 grams fresh.)

Anhalonidine (trace)

Anhalidine (trace)

Strombocactus disciformis (DC) Br. & R.

Reported to contain Isocitric acid (tlc & glc by Kringstad & Nordin 1975)

Tephrocactus articulata (Pfeiffer) Hunt

Whewellite was identified as druses.

Monie & Baran 2002 [Examined as Tephrocactus articulatus and seperately as Tephrocactus glomeratus]

Tephrocactus aurantiaca Lindley

Hordenine (%) DeVries et al. 1971

Mucilage determined to be comprised of Arabinose (30.8%), Galactose (38.3%), Galacturonic acid (6.6%), Rhamnose (10.3%) & Xylose (14.0%). Moyna & DiFabio 1978 (Analysed MAM 1307)

Tephrocactus soehrensii Britton & Rose

Reported to contain Betalains as pigments.

Thelocactus bicolor (Galeotti) Britton & Rose

AKA Glory of Texas

Reported to contain unidentified alkaloids. Chalet 1980a cited Dominguez et al. 1969

Itesmol (a steroid; 0.15% dry wt.) Dominguez et al. 1968

Eisacol (a triterpenoid) Dominguez et al. 1968
Two unidentified components. Dominguez et al. 1968
Theleocactus pseudopectinatus (Backberg) Anderson & Boke See as Pelecyphora pseudopectinata

Theleocactus spp: A number of Theleocactus species were said to have been found devoid of alkaloid but their specific identities were not included. West et al. 1974

Two names appeared that seem to have created a divergent mess involving the name “bicolor”.

Terán & Berlandier, 1832 published Cactus bicolor (now Thelocactus setispinus) This appears to be what Johnson decided to name Hamatocactus bicolor despite what many other authors seem to make of it. (Benson called this Ferocactus setispinus.)

Galeotti ex Pfeiff. 1848 published Echinocactus bicolor (now Thelocactus bicolor) Taylor called it Ferocactus bicolor in 1979.

I am not sure how Anderson or Hunt merged I.M. Johnson’s bicolor with Thelocactus bicolor’s history. It is listed as renaming Galeotti ex Pfeiffer’s plant but according to others Johnson renamed Terán & Berland’s plant (setispinus).

The declarations of synonymy go much farther in terms of apparent errors in both directions with T. bicolor descriptions being lumped with setispina being declared a synonym while others have Terán & Berlandier included with bicolor while preserving setispina on its own. Its totally schizoid.

Thelocactus bicolor subsp. bicolor:
Echinocactus bicolor Galeotti ex Pfeiffer, 1848
Echinocactus bicolor var. pottsii Salm-Dyck, 1850
Echinocactus bicolor var. schottii Engelmann, 1856
Echinocactus bicolor var. tricolor K. Schumann, 1898
Echinocactus wagnerianus A. Berger, 1929
Ferocactus bicolor (Galeotti ex Pfeiffer) N.P. Taylor, 1979
Thelocactus bicolor subsp. commodus (R. Haas) Doweld, 1999
Thelocactus bicolor subsp. zwakii Chvastek & Halda, 2000
Thelocactus bicolor var. commodus R. Haas, 1988
Thelocactus bicolor var. pottsii (Salm-Dyck) Backberg, 1961
Thelocactus bicolor var. schottii (Engelmann) Krainz, 1961
Thelocactus bicolor var. tricolor (K. Schumann) Y. Ito, 1952
Thelocactus bicolor var. wagnerianus (A. Berger) Krainz, 1961
Thelocactus schottii (Engelmann) Kladiwa & Fittkau, 1975
Thelocactus wagnerianus A. Berger, 1929

Thelocactus setispinus:
Cactus bicolor Terán & Berlandier, 1832
Echinocactus hamatus Muehlenpfordt, 1848
Echinocactus muenhpfordtii Fennel, 1847
Echinocactus setispinus Engelmann, 1845
Echinocactus setispinus var. cachetianus Labouret, 1853
Echinocactus setispinus var. hamatus (Muehlenpfordt) Engelmann, 1850
Echinocactus setispinus var. mierensis K. Schumann, 1898
Echinocactus setispinus var. orcuttii Engelmann, 1850
Ferocactus setispinus (Engelm.) L.D. Benson, 1969
Hamatocactus bicolor (Terán & Berlandier) I.M. John- ston, 1924
Hamatocactus setispinus (Engelmann) Britton & Rose, 1922
Hamatocactus setispinus var. hamatus (Muehlenpfordt) Borg, 1937
Thelocactus setispinus (Engelmann) E.F. Anderson, 1987
Thelocactus setispinus var. cachetianus (Labouret) Pilbeam, 1995
Thelocactus setispinus var. hamatus (Muehlenpfordt) Pilbeam 1996
Thelocactus setispinus var. mierensis (K. Schumann) Pil- beam 1996
Thelocactus setispinus var. muenhpfordtii (Fennel) Pil- beam 1996
Thelocactus setispinus var. orcuttii (K. Schumann) Pil- beam 1996

Trichocereus andalgalensis (Weber) Kreuzinger
Hordenine (%?) Nieto 1987
Candicine (%?) Nieto 1987
Needs an analysis and taxonomic study.

Trichocereus argentinensis n.n. Hort. B. Ressler
A stout peruvianoid-macrogonoid said to reach up to 8-9-(10?) inches in diameter. Initially mislabeled Cereus argentinensis, it is assumed to have originated in northern Argentina. In pictures it looks very bluish-blushed (See Ressler’s website) and interestingly similar to what is pictured on page 41 in Innes & Glass 1991 mislabeled Cereus peruvianus with its origin given as Argentina! Roberto Kiesling, in correspondence, insists that nothing like this occurs in Argentina and the origin information is mistaken.

Also see an authentic Cereus argentinensis in Innes & Glass 1991

Trichocereus atacamensis (Philippi) Marshall
(San Pedro de Atacama, Chile)
Needs an analysis.

See comment in Activity Notes.

http://www.largelyaccurateinformationmedia.com
Cactus Chemistry: By Species

Trichocereus bridgesii (Salis-Dyck) BRITTON & ROSE

AKA San Pedro & achuma (Bolivia)

Tyramine (1-10% of over 50 mg total alkaloids/100 gm of fresh)

3-Methoxytyramine (1-10% of over 50 mg total alkaloids/100 gm fresh)

3,4-Dimethoxyphenethylamine (1-10% of over 50 mg total alkaloids/100 gm fresh)

[3,4-diMeO-5-OH-PEA and 3,5-diMeO-4-OH-PEA are also listed in error for *T. bridgesii*. The reference cited, AGURELL 1969b, did not report either compound.]

Mescaline (Over 25 mg. per 100 grams fresh.)

AGURELL 1969b [Obtained via European commercial sources]

0.56% (dry green outer tissues) SERRANO 2008 (Wild harvested; La Paz, Bolivia)

0.18% (dry outer green tissues) OUNGBEDDEDE 2009 (Bob Gillette commercial nursery stock in California)

[All forms & varieties of this species are said to contain levels of mescaline ranging from nearly inactive to potent: Conversations with friends, DAVIS 1983, DAVIS 1997, DAVIS 1999 & also the 1998 Entheogen Review 7 (3): 70-71.]

See additional comments in Activity Endnotes.

Bridgesigenin A (a triterpene: 0.0378% dry wt.)

Bridgesigenin B (a triterpene: 0.00657% by dry wt.)

Both triterpenes by KINOSHITA et al. 1992 [Both triterpenes arose via acid hydrolysis of the saponin fraction]

Reported to contain Kaempferol & Quercetin (Flavonols) RICHARDSON 1978 (based on acid hydrolysis)

The degree of sliminess for *T. bridgesii* is claimed by growers to range from extreme to almost lacking.

Trichocereus sp. W. Baker 5452 was collected by Julio Cruz at Murillo, Jayuri Province, Bolivia, on 20 March, 1983.

The original herbarium vouchers were submitted as *Trichocereus pachanoi* but it is clearly a *bridgesii*.

Presence of Mescaline was proven both through human bioassays and unpublished analysis (ANONYMOUS sources; personal communications.)

Purported to have indigenous use but that claim lacks details or a reference.

Lacking a published analysis.

The monstrose forms of *T. bridgesii* have been purported to be especially active in human bioassays.

OUNGBEDDEDE 2010 analyzed the short jointed monstrose form and determined it to contain only 0.48% mescaline in the dried outer green tissues.

Trichocereus bruchii (Britton & Rose) RITTER

Flower contains Betanin (major), Phyllocactin, Isobetanin, Isophylllocactin & an unidentified Betacyanin.

PIATTELI & IMPERATO 1969

Trichocereus camaraguensis Cardenas

Tyramine (trace)

N-Methyltyramine (trace)

3-Methoxytyramine (trace)

3,4-Dimethoxyphenethylamine (trace)

AGURELL 1969b [European commercial sources]

Trichocereus candidics (Gill.) Britton & Rose

Tyramine (trace) MATA et al. 1976a. Also reported in MATA et al. 1976b

N-Methyltyramine (0.004% by dry weight) MATA et al. 1976a; Also isolated in MATA et al. 1976b. Not observed by AGURELL 1969b

Hordenine (over 50% of over 50 mg total alkaloids/100 gm fresh) AGURELL 1969b [Obtained via European commercial sources]; (Variable from 0.5 to 5%) RETI 1950; also CASTRILLON 1950 & RETI 1933.

Candicine (Variable. 0.5 to 5%) RETI 1950 also RETI 1933 and CASTRILLON 1950

2 unidentified trace alkaloids detected MATA et al. 1976

Trichocereus cephalomacrostibas Rauh & Backeberg

Needs an analysis (Also called a Haageocereus. Now it is considered to be a Weberbauercereus)

This was purported to contain mescaline by Caycho Jimenez but no reference was included with the claim.

See comments in the Activity Notes.

Trichocereus chalaensis Rauh & Backeberg

Needs an analysis

See images in the San Pedro book.

Trichocereus chiloensis (Colla) Br. & R. See as Trichocereus chilensis

Trichocereus chilensis (Colla) Britton & Rose

AKA buisco

Candicine (trace) CORTEZ et al. 1972

“no triterpenes or alkaloids” “essentially devoid of alkaloids”

β-Sitosterol

Unidentified material believed to be a straight chain alcohol [mp 82-82.5° C (α) 4.9-11°] (also described in this paper as a long chain aliphatic alcohol and an aromatic alcohol.) It was thought to resemble n-Nonacosan-10-ol but mmp was depressed.

DIERASSI et al. 1956a [Material from Chile]

β-O-Palmityl longispinogenin (Olean-12-ene-3β,16β,28-triol-3-palmitate) in 1% yield. MORALES & MCLAUGHLIN 1989 (Collected in Chile)

AGURELL 1969b (Obtained via European commercial sources) reported it devoid of alkaloids but specifically did not look for quaternary amines like Candicine]
Trichocereus courantii (K. Schumann) Backeberg
Tyramine (trace)
3,4-Dimethoxyphenethylamine (1-10% of 1-10 mg of total alkaloids/ 100 grams fresh)
3-Methoxytyramine (1-10% of the 10-50 mg of total alkaloids/ 100 grams fresh)
N-Methyl-3-methoxytyramine (10-50% of 10-50 mg of total alkaloids/ 100 grams fresh)
N-Methyltyramine (Over 50% of 10-50 mg of total alkaloids/ 100 grams fresh)
Agurell et al. 1971b [Obtained via commercial source in the Netherlands]
[The typo 2-Methoxytyramine has been published.]

Trichocereus cressicostata Ritter
Needs an analysis & taxonomic study

Trichocereus cuzcoensis Britton & Rose
Common names: “Giganton” and “Jahuackollai”
Tyramine (trace) Agurell et al. 1971b
3-Methoxytyramine (Over 50% of the over 50 mg of total alkaloids/ 100 grams fresh) Agurell et al. 1971b
3-Hydroxy-4,5-dimethoxyphenethylamine (trace) Agurell et al. 1971b [Obtained via commercial source in Germany] and Lindgren et al. 1971
Mescaline (0.5-5 mg. per 100 grams fresh) Agurell et al. 1971b [Also identified by Lindgren et al. 1971]
0.0% Cotarurse, Arequipa
0.0% Huaytampo, Cuzco
0.0% Huacarpay, Cuzco
0.0% Capacmarca, Cuzco
Serrano 2008 (All were wild collections)
[4-MeO-PEA appears listed in error. The claim is not supported by any of the references cited.]
“no triterpenes or alkaloids” [Ran with a second procedure and reported truces of non-phenolic basic material]
Dierassi et al. 1956a [Material from Cuzco, Peru]
β-Sitosterol (a sterol) Dierassi et al. 1956a
Unidentified alcohol that was also reported in T. chiloensis (see under). Dierassi et al. 1956a
See also T. peruvianus var. cuzcoensis (under T. peruvianoid) which appears to be simply an undescribed synonym for T. cuzcoensis. They ALL appear to have originated with Karel Knize who has offered "peruvianus var. Cuzco KK340" & "peruvianus var. cuzcoensis KK340"

Trichocereus fulvilanus Ritter
Tyramine (10-50% of over 50 mg of total alkaloids/ 100 grams fresh)
N-Methyltyramine (10-50% of over 50 mg of total alkaloids/ 100 grams fresh)
Mescaline (trace) Agurell et al. 1971b [Commercial German source]
Backeberg 1959 viewed this as possibly synonymous with T. deserticolus but, based on seed coat morphology, Friedrich & Glattzel 1983 considered the two to be separate species. Hunt sided with Backeberg. See Part B San Pedro

Trichocereus grandiflorus
This appears presented as a DMT container in both the underground literature and on the Internet. This arose from a preliminary report by Sasha Shulgin that he had observed what he suspected was DMT in GC-MS. He was unable to duplicate his observation but, upon flowering, discovered that he had used a yellow flowered form rather than the red-flowered one used in his initial analysis. It is unclear whether this was the cause for the disparate results or if a contaminated GC-MS was the culprit. Sasha suspects the latter.
All of the various forms of plants known in horticulture within and around this name are in need of further investigation; both as chemical investigation and taxonomic study. (Masochists only need apply.) See comments on synonyms under T. huascha

Trichocereus grandiflorus (red-flowered) see Trichocereus huascha
There have been anecdotal reports of activity from material called Trichocereus grandiflorus. While purely speculative, perhaps the mislabeled material depicted on page 78 of Part B San Pedro might provide one suggestion as to a possible source for this rumor? Of course the issue of what is meant by “active” should be the first point to be clarified.

Trichocereus huaschaensis H. Johnson
[Ex: UC Botanical Gardens (H. Johnson; Peru 56.1153; also in the Huntington as HBG18568. Released into horticulture by Johnson as T. huaschaensis and by HBG as HBG18562.] Needs an analysis. One human bioassay using 500 gm fresh wt of 1 version of the horticultural material sold under this name reported a stimulant but not hallucinogenic action. Anonymous 2000 It has conflicting bioassay reports with at least one claiming the presence of mescaline. Anonymous
It should be emphasized that there appears to be 3 distinct versions in botanical gardens bearing this name and at least one additional offering in horticulture. The source for the material at both the Huntington & Berkeley Botanical Gardens was Harry Johnson, Sr., of Paramount California (better known as the source for the Paramount hybrids).
Harry Johnson, Sr. field collected the seeds in Peru (in 1956) so a possibility exists that the seeds produced F1 hybrids. See Part B San Pedro for images

Trichocereus huascha (Weber) Britton & Rose
Hordenine (Sole alkaloid. 10-50 mg/ 100 gm of fresh plant) Agurell 1969b [Obtained via European commercial sources]; (trace) Follas et al. 1977 [Follas analyzed as Lobivia huascha (Weber) W.T. Marshall.]
N-Methyltyramine (trace) Follas et al. 1977
Tyramine (trace) Follas et al. 1977
Cactus Chemistry: By Species

Note on *T. huascha*:
In partial contrast to Ritter, Hunt considers the following to be synonyms of *Echinopsis huascha* (Weber) Friedrich & Rowley (and this summation ignores all purely horticultural and ill-defined material such as the orange flowered “grandis”) *Chamaecereus grandiflorus* (Britton & Rose) Fric

Echinopsis huascha (Weber) Friedrich & Rowley This is the name most commonly accepted at the present time.

Echinopsis lobivioides Backebberg

Echinopsis pachyretiana (Backebberg) Friedrich & Rowley [In horticulture this has lemon-yellow flowers]

Echinopsis rowleyi (Friedrich) Kiesling

Helianthocereus andalgalensis (Weber) Backebberg

Helianthocereus grandiflorus (Britton & Rose) Backebberg

Helianthocereus huascha (Weber) Backebberg

Helianthocereus hylacanthus (Spagazzini) Backebberg

Helianthocereus pachycereus Backebberg

Lobivia andalgalensis (Weber ex Schumann) Britton & Rose (See photos under *T. andalgalensis* and under *T. grandiflora*)

Lobivia grandiflora Britton & Rose

Lobivia huascha (Weber) W.T. Marshall

Lobivia hylacantha Spagazzini

Lobivia purpureominiata Ritter

Pseudolobivia lobivioides (Backebberg) Backebberg ex Kraitz

Trichocereus andalgalensis Hosseus

Trichocereus catamarcensis Ritter

Trichocereus grandiflorus Backebberg

Trichocereus huascha (Weber) Britton & Rose

Trichocereus lobivioides Graesser & Ritter ex Ritter

Trichocereus rowleyi Friedrich

Friedrich & Glaetzle 1983 kept *huascha* and *rowleyi* separate based on their seed-coat morphology.

(Note also that we disregard much of this; pending the location of some sort of published research or clarifications. Ideally this would take the form of a Monograph for the supergenus *Echinopsis*.)

Also be aware that any *Trichocereus lobivioides grandiflorus* is likely to be a hybrid. These are commercially available in red and other colorful flowers.

T. huascha, as available in horticulture, is offered in both a yellow and red flowered form.

Trichocereus knuthianus Backebberg

Tyrmine (10-50% of 10-50 mg total alkaloids/ 100 gm fresh)

3-Methoxytyramine (10-50% of 10-50 mg total alkaloids/ 100 gm fresh)

Agurell 1969b [Obtained via commercial sources]

Mescaline (5-25 mg. per 100 grams fresh.

Agurell 1969b [Human bioassays suggest that this value might be low for many specimens. Conversations with friends & the 1998 Entheogen Review 7 (3): 71. MANY horticultural offerings appear to be quite potent while others are demonstrably weak. It is unclear how much of this is strain related and how much reflects variability within a given strain. Great confusion, or at least disagreement, apparently exists concerning what is and what is not this species.]

[3,4-diMeO-5-OH-PEA and 3,5-diMeO-4-OH-PEA are also listed, in error, for this species. The reference cited, *Agurell* 1969b, did not report either compound.]

No mucilage studies have been located thusfar but it should be noted that some strains are exceedingly slimy and other much less so.

Amazingly, Albesiano & Kiesling merged *T. macrogonus* and *T. peruvianus* as *T. macrogonus* subsp. *macrogonus*.

A number of triterpene saponins have been reported.

Pachanol A (a hydrolyzed sapogenin) by Takizawa et al 1993

Bridgesides A1, C1, C2, D1, D2, E1 & E2 (oleanane type)

Pachanosides C1, E1, F1 and G1 (pachanane type)

Trichocereus manguinii Backebberg

3-Methoxytyramine (1-10% of 10-50 mg total alkaloids/ 100 gm fresh)

Hordenine (5-25 mg. per 100 grams fresh.

Agurell 1969b [Obtained via European commercial sources]

Candicine (trace) Reti 1933, Reti & Arnolt 1935 & Reti 1950

Trichocereus macrogonus (Salm-Dyck) Riccobono

Tyrmine (1-10% of 10-50 mg total alkaloids/ 100 gm fresh)

Agurell 1969b

3-Methoxytyramine (1-10 % of 10-50 mg total alkaloids/ 100 gm fresh.)

Agurell 1969b

3,4-Dimethoxyphenethylamine (1-10% of 10-50 mg total alkaloids/ 100 gm fresh) *Agurell* 1969b [Obtained via European commercial sources]

Mescaline (5-25 mg. per 100 grams fresh.)

Agurell 1969b [Human bioassays suggest that this value might be low for many specimens. Conversations with friends & the 1998 Entheogen Review 7 (3): 71. MANY horticultural offerings appear to be quite potent while others are demonstrably weak. It is unclear how much of this is strain related and how much reflects variability within a given strain. Great confusion, or at least disagreement, apparently exists concerning what is and what is not this species.]

[3,4-diMeO-5-OH-PEA and 3,5-diMeO-4-OH-PEA are also listed, in error, for this species. The reference cited, *Agurell* 1969b, did not report either compound.]

3,4-Dimethoxyphenethylamine (1-10% of 10-50 mg total alkaloids/ 100 gm fresh.)*Agurell* 1969b [Obtained via European commercial sources]

No mucilage studies have been located thusfar but it should be noted that some strains are exceedingly slimy and other much less so.

Amazingly, Albesiano & Kiesling merged *T. macrogonus* and *T. peruvianus* as *T. macrogonus* subsp. *macrogonus*.

A number of triterpene saponins have been reported.

Pachanol A (a hydrolyzed sapogenin) by Takizawa et al 1993

Bridgesides A1, C1, C2, D1, D2, E1 & E2 (oleanane type)

Pachanosides C1, E1, F1 and G1 (pachanane type)

Trichocereus pachanoi Britton & Rose

AKA “San Pedro”, “achuma”, “aguacollá”, “huachuma”, “gigantón” & many other common names.

Albesiano & Kiesling renamed T. pachanoi as Trichocereus macrogonus subsp. pachanoi.

93.5% water by weight according to Poisson 1960.

Tyramine (trace) Agurell 1969a and Agurell 1969b

3-Methoxytyramine (0.01% by dry weight) Crosby & McLaughlin 1973 [Obtained via Californian commercial sources]; (1-10% of over 50 mg total alkaloid/ 100 gm fresh) Agurell 1969b; (Less than 0.01% fresh) Agurell 1969a. [Also reported in Agurell & Lundström 1968]

Hordenine (trace) Agurell 1969b

3,4-Dimethoxyphenethylamine (1-10% of over 50 mg total alkaloid/ 100 gm fresh) Agurell 1969b [Obtained via European commercial sources]

3-Hydroxy-4,5-dimethoxyphenethylamine (trace) Agurell 1969b

4-Hydroxy-3,5-dimethoxyphenethylamine (trace) Agurell 1969a and 1969b. Also reported in Agurell & Lundström 1968

Mescaline (Highly variable) 0.025%+ (over 25 mg per 100 gm) [Agurell 1969b] to 0.12% [Poisson 1960 (Collected in Peru)] reported by fresh weight. [Also 0.04% fresh/ ~ 0.67% dry: Agurell 1969a & 0.067-0.079% fresh: Bruhn & Lundström 1976a]

Recoveries from 0.331% [Crosby & McLaughlin 1973] up to 2.0% [Poisson 1960] have been reported from dry plants. [See also Turner & Heyman 1960 (Collected in Peru) who reported 0.9% by dry weight in misidentified plants] From 0.109%-2.375% dry wt. (6 specimens) was estimated photometrically in Swiss cultivated plants by Helmlin & Brenneisen 1992 [See Note below];

0.310% mescaline by fresh weight (3.10 mg/gm fresh as the average of three specimens; estimated using HPLC) They also reported an average of 2.06% by dry weight. (Ed.: Notice the obvious discrepancy.) Grown in Italy. Gennaro et al. 1996;

Gonzales Huerta 1960 recovered 4.5% mescaline from the outer tissues of correctly identified Peruvian plants. She reported being able to obtain this yield only when using the approach of Folkers & Koniuszy 1939 rather than that described in Cruz Sanchez 1948.

Cruz Sanchez 1948 reported recovering 5% dry wt; using only the outer layer of flesh (misidentified as Opuntia cylindrica).

[Alkaloid values are often very low in many cultivated plants but the controlling factors are not clear. Species appears highly variable in potency & palatability.]

See comments in Activity Notes.

[Ag estimate of 0.155% mescaline free base by dry wt. was made on a nongrafted control vs. 0.15% ten months after being used for grafting (with the mescaline-free T. spachianus). (Initially 2" by 12" plants) Pummangura et al. 1982a]

[Alkaloid values are commonly low in many cultivated plants.]

Anhalonidine (0.01% of total alkaloid) Agurell 1969a; (trace) Agurell 1969b

Alkaloids were detected in Brown et al. 1968 but none were identified.

[Anhaline has been listed in error. The reference cited, Agurell 1969b did not report this alkaloid.]

[Pellotine has been listed in error. The reference cited, Lundstrom 1970 did not report this alkaloid.]

Unidentified lactone-forming acid (tlc by Kringstad & Noldal 1975)

Aglycones isolated after acid or enzymatic hydrolysis of the isolated corresponding sapogenins:

Pachanols A & B

Bridgesigenins A, B & C

Kinoshita et al. 1995

Some modern analytical reports for Peruvian pachanoi

Specimens not obviously being cultivated:

0.55% Arequipa, Arequipa

0.80% Arequipa, Arequipa

0.86% Quequeña, Arequipa

1.13% Pueblo Libre, Lima

All of the above were reported in Ciuno et al. 2009 (Using dried outer green tissue)

No note included as to whether under cultivation

1.4% Barranca

0.78% Chiclayo

Both reported by Reyna Pinedo & Flores Gáércs 2001

4.7% Matucana (harvested in Peru; analyzed in USA)

Ogunbede 2010 (Using dried outer green tissue)

Bruhn et al. 2008 reported lophophine, 3,4-methylenedioxymethamphetamine (homopiperonylamine), and N,N-dimethyl-3,4-methylenedioxymethamphetamine (lobivine) to be new minor alkaloids in this species and in peyote. This paper needs to be viewed with reservations.

See comments in Activity Notes.

T. pachanoi notes:

Note that this is nearly 23X from max to min (i.e A San Pedro specimen was observed that was almost 23 times stronger than another San Pedro that was simultaneously being evaluated)

Notice also that Gennaro’s estimation was even higher.

A far more detailed look at this species (and many more images) can be found in Part B San Pedro
Collectors of wild seeds such as Karel Knize or Friedrich Western greenhouses supplied from known commercial seedlings which were produced by one or more of the many tempting to think of other low values in the literature as being plant but I cannot determine this one way or the other. It is Pummangura's 0.155% material may also have been this seen formal published analysis.

Ble human bioassays despite it not being clear if it has ever Presence of mescaline is established through innumerable...ho's 0.155% material may also have been this seen formal published analysis.

Cactus Chemistry: By Species

Trichocereus pachanoi
Cultivated under the mistaken name Trichocereus peruvianus Huancabamba. 0.54% mescaline by dry wt. Grown by Oasis from seeds collected at Huancabamba. (Image on next page) Ogunbedede 2010 (Using dried outer green tissue) 1.2% mescaline by dry wt. Grown by SS from the same seed lot. (Images on this page) Ogunbedede 2010 (Using outer green tissue)

Trichocereus pachanot?
This is by far the most commonly represented horticultural form of pachanoi in commerce in the USA and possibly also Australia (far more abundance of genetic diversity exists in Oz than in the USA) My present suspicion is that this may be a hybrid that has displaced bona fide pachanoi as the predominate cultivar in the US. I do not suspect malice or deliberate deception just simple displacement over time due to the vast numbers generated by both individual growers and by commercial propagation operations due to its far greater growth rate & overall vigor, cold/heat tolerances and rot resistance when compared to a bona fide Trichocereus pachanoi.

My present GUESS based on its flowers, habit and intense vigor is that this may be a bridgesii crossed with a pachanoi or something similar but whether work is ever done that is capable of establishing this one way or another remains to be seen. It might be a product of horticulture but there is some, presently anecdotal, evidence to suggest it might have entered cultivation as a Bolivian collection during Harry Blossfeld's Andean expedition.

An error that I (Trout) have helped to widely propagate is referring to this cultivar as Backeberg's clone. Whether there really is such a thing as a clone line from Backeberg's hands that can be identified in horticulture cannot presently be established despite the best efforts of friends in Germany. If Backeberg did bring a clone line into horticulture it would be a bona fide pachanoi and not the cultivar I have so often in past years mistakenly called Backeberg's clone.

See the growing summary of thoughts and photos at: “pachanoi or pachanot?” http://www.largelyaccurateinformationmedia.com/pedro/pedro.html

The main body of this thought is also now attached to the San Pedro PDF also located at the same website.

Presence of mescaline is established through innumerable human bioassays despite it not being clear if it has ever seen formal published analysis.

Pumamanguru's 0.155% material may also have been this plant but I cannot determine this one way or the other. It is tempting to think of other low values in the literature as being from the same source but is is clear that at least some came as seedlings which were produced by one or more of the many Western greenhouses supplied from known commercial collectors of wild seeds such as Karel Knize or Friedrich Ritter or Harry Johnson and others AND there are two Peruvian samples that produced 0.00% mescaline for Cjuno so only more questions arise if looking closely at what little is known.

It is clear that its mescaline content is generally low: typically it is less than 0.2% by dry weight. In the otherwise unpublished isolations appearing online values for mescaline concentrations falling in the range of 0.1% to less than 0.05% are the most common.

Based on their bioassay results it is believed by several anonymous correspondents that other alkaloids such as 3-Methoxytyramine and DMPEA may also be present.

Trichocereus aff. pachanoi (Peru 64.0762) (Clone wild collected by Paul C. Hutchison, Jerry K. Wright & R.M. Straw on August 8, 1964 as PCH et al. 6212) 0.82% mescaline by dry weight. (HPLC) Ogunbedede 2010 (using green outer tissue) Originally collected from shaded canyon of Rio Marañon, Chagual, Huamachuco, La Libertad, above Chagual, 5 km below Aricapampa. Elev. 2740 m.

Trichocereus pachanoi cv. ‘Tom Juul’s Giant’ [Note 6]
Unclear in origin prior to Tom Juul. Peru seems probable. 1.4% Ogunbedede 2010 (using dried green outer layer) Presence of Mescaline was both demonstrated by human bioassay and confirmed previously by gc-ms. but it should be emphasized that there are conflicting reports ranging from full activity at 4-6 inches to powerful trips with 1 foot to complete inactivity with 2 feet.) See the 1998 Entheogen Review [7 (3): 70] and [7 (4): 99-100] Bioassay information came from various friends. See more details and lots of images in Part B San Pedro

Juul’s Giant appears to be highly variable in potency with some apparently being completely inactive. It is purported by some users to contain additional alkaloids and this has been supported in some but not all gc-ms.

At least 2 forms are in cultivation. GC-MS by Shulgin showed them to be distinct from each other chemically even though the original source was believed to be identical (Jim Daniel)

Juul’s Giant (A):
Unknown Isoquinoline was 90%
Mescaline less than 10%
MinorIsoquinoline (not identified)
3 trace Isoquinolines (not identified)
[In a second sampling mescaline was the major alkaloid]

Juul’s Giant (JM):
Major alkaloid was an Unknown compound
Second largest peak in the graphs appears to be a lab artifact.
Also observed some sort of phenylethanol

See more details in Part B San Pedro.
It actually gets more complicated as Sasha commented he had thus far run gc-ms on 5 samples, several of which were from the same form, and came up with 5 different results.

Trichocereus pallarensis Ritter
0.47% (dry outer green tissues) Ogunnedeede 2010 (From F. Ritter seed obtained from Winter in 1960; also depicted on entire page.)

Trichocereus pasacana (Weber) Britton & Rose
Candicine (0.08% dry wt.) Meyer & McLaughlin 1980; (0.075% dry wt.) Davis et al. 1983
Hordenine (no quantification) Meyer & McLaughlin 1980; (over 50% of 1-10 mg total alkaloids/ 100 gm fresh) Agurell 1969b
N-Methyltyramine (no quantification) Meyer & McLaughlin 1980
Tyramine (no quantification) Meyer & McLaughlin 1980
Has been reported to have stimulant activity in human bioassays. Anonymous source (via Voegelbreinder)

Trichocereus pasacana inermis Fröh 1928 was said to be a synonym for Echinopsis valida Monville in Kreuzinger 1935.

Trichocereus peruvianusoids see in Part B San Pedro

Trichocereus peruvianus Britton & Rose
AKA “San Pedro”, “San Pedro Macho”, “cuchuma”, “Peruvian Torch” and a number of other common names. Appears to be 90% water by weight (See Note A).
Tymaine (over 50% of 1-10 mg total alkaloids/ 100 gm fresh - mescaline was not reported but two minor unknowns were present.) Agurell 1969b [Obtained via European commercial sources]; (0.0085% dry wt) Pardanani et al. 1977 [Grown from seed in California]
3-Methoxytyramine (trace) Agurell 1969b; (0.01% dry wt) Pardanani et al. 1977.
3,4-Dimethoxyphenethylamine (trace) Pardanani et al. 1977.
4-Hydroxy-3,5-dimethoxyphenethylamine (0.0035% dry wt) Pardanani et al. 1977.
Mescaline (0.817% dry wt) Pardanani et al. 1977 (See Note B) [Underground mythology claiming that 1) this species has 10X the concentration of T. pachanoi & 2) that it is comparable to peyote in potency, appears to have no basis in fact (See Note C). I have been told that a half inch slice of a large fresh stem would yield 500 milligrams of mescaline but this lacks any sort of confirmation. Turner 1998 (Entheogen Review 7 (1): 18.) recommended 4 inches of a 4-1/2 inch diameter plant for the same amount. The amount used in Turner’s dose would indicate no more than 0.8% dry or 0.08% fresh wt. (See Note D) Other human bioassays (Anonymous) indicated that twice this much was required for the same dosage] Many appear to be weaker than this. 0.05% fresh weight may be a better estimate of an average value for good peruvianus strains. Mescaline was not detected by all investigators including BOTH Agurell 1969b and Djerassi et al. 1955 (Note E) 2-Chloro-mescaline (0.016% dry wt) Thought to be an extraction artifact. Pardanani et al. 1977
Traces of an unidentified triterpene lactone Djerassi et al. 1955b [Wild collected: Peru]
Unidentified waxy solid (0.22% by dry wt) Djerassi et al. 1955b

T. peruvianus notes:
A: Based on one evaluation of a basal slice taken from T. peruvianus ‘Blue Form’.
B: Pardanani et al. 1977 reported the material they analyzed as being KK242 grown in California by Abbey Garden (from Knize seed) What they specifically analyzed is therefore really anyone’s guess at this point but an educated guess would be that it was one of the spiny forms of KK242 as these are what predominately has been produced from Knize’s KK242 seeds. See the assorted KK242 images included in San Pedro for an illuminating look.
C: This only approaches being a true statement if selectively comparing the only published isolation of mescaline from T. peruvianus with the lowest testing T. pachanoi reported to date.
The highest T. pachanoi with a mescaline isolation reported is well over twice Pardanani’s value and an additional estimate exists that is nearly 3 times higher (Please remember that T. pachanoi exists which is many times stronger than other T. pachanoi.) Similarly, the lowest published value for T. pachanoi [0.109%] is greater than the lowest published value for L. williamsii [0.1%]
D: Approximation based on a fresh weight determination of 128.5 grams per inch for a 3.75 inch in diameter Trichocereus specimen.
E: The material did give a positive Mayer test, but the ether soluble fraction tested neutral and they were unable to isolate any crystalline material so Djerassi concluded it contained no alkaloid. Agurell on the other hand WOULD have observed even traces of mescaline had they been present.

Important comment:
Every horticultural form and variety of T. peruvianus lacks a published analysis; except for two versions of “KK242”, one from Knize seed and one from a Knize cutting, the undefined commercial European material was examined by Agurell and the Peruvian material that was screened by Djerassi.

A negative alkaloid analysis was also reported by a friend working with 1.5 year old material grown from seed in New Zealand but this however turned out to be material misconmened Trichocereus peruvianus trujilloensis. This was a Dick Van Geest collection that is not a Trichocereus. See more comments in San Pedro.

Species appears to be highly variable in potency & palatability.
Cactus Chemistry: By Species

To complicate matters further, even material from the same origin appears highly variable in alkaloid content. Whether this is the result of differences in season, environment, water or time of day of harvest has not been established.

To complicate matters even further still; material from a single clone has been reported to be highly variable in alkaloid content when bioassayed repeatedly.

More study is clearly needed.

Many more images of can be viewed in Part B San Pedro at http://www.largelyaccurateinformationmedia.com

Trichocereus peruvianus KK242
0.817% Mescaline. Seed grown by Abbey Garden using KK242 seeds from Karel Knize.
PARDANANI et al. 1977 (Using intact plant)
0.24% K242 propagated from a live cutting sent by Karel Knize.
OGUNBEDDE 2010 (Using dried outer green tissue)

Widely asserted to be nearly useless or totally inactive according to anecdotal bioassay accounts.

Some of this is believed to be the result of some confusion between peruvianus and cuzcoensis in some commercial seeds originating from Karel Knize in Peru. See MS SMITH online for comments and the photograph at the bottom of this page. While it is certainly true that there are abundant occurrences of cuzcoensis produced from Knize seeds that were mislabelled KK242 this does not include a huge number of KK242 specimens worldwide which are peruvianus or pachanoi. There are also unmistakable Trichocereus bridgesii specimens which have been grown from Knize’s KK242 seeds.

A plant obtained as a live cutting from Karel Knize in Peru as Trichocereus peruvianus KK242 Matucana has been shown to be as active as many pachanoi plants according to its grower.

Trichocereus peruvianus [or aff. pachanoi?]
0.25% Mescaline. Chavin de Huantar, Huarí, Ancash
CHUNO et al. 2009 (Using dried outer green tissue)
Images can be found online of the cacti growing at Chavin de Huantar.

Trichocereus poco BACKEBERG
Hordenine (over 50% of 1-10 mg of total alkaloids/ 100 gm of fresh plant)
AGURELL 1969b [European commercial sources]

Trichocereus puquiensis RAUH & BACKEBERG
Determined to contain Mescaline.
0.28% Chaviña, Lucanas, Ayacucho
0.13% Chumpi, Parincochas, Ayacucho
0.11% Incuyo, Parincochas, Ayacucho
0.50% Vado, Lucanas, Ayacucho
SERRANO 2008 & CHUNO et al. 2009 (Wild Peruvian collections)
0.13% mescaline (From a clone collected by Paul Hutchison)
OGUNBEDDE 2010
[Both accounts above analyzed dried outer green tissues.]

The monstrose form has been reported to be mescaline containing in human bioassay.

20 inches was described as being of “medium strength”
Correspondent requesting anonymity

Trichocereus purpureopilosus WEINGART
Tyramine (10-50% of 10-50 mg of total alkaloids/ 100 grams fresh)
AGURELL et al. 1971b
N-Methyltyramine (10-50% of 10-50 mg of total alkaloids/ 100 grams fresh)
AGURELL et al. 1971b [Obtained via commercial source in the Netherlands]

Trichocereus riomizquiensis RITTER
0.40% grown from Ritter’s seed (FR 856)
OGUNBEDDE 2010 (dried outer green tissue)

Trichocereus santiaguensis RAUH & BACKEBERG
Successful bioassay reported by source requesting anonymity.
0.31% Mescaline. Mancos, Yungay, Ancash
CHUNO et al. 2009 (Wild Peruvian collection.)
0.32% (using OST 92701 seed-grown in cultivation.)
OGUNBEDDE 2010
(Everything above using dried outer green tissue.)
PALOMINO’s 1972 dissertation details the process he used for isolating alkaloids and describes their physiological effects on mice (with results that were strongly reminiscent of the comments in CRUZ SANCHEZ 1948)
He described Trichocereus santiaguensis as being of “low toxicity.” (Meaning low alkaloid?) Oddly, it never mentioned how he identified the plant or what the alkaloids were.
Our thanks to Dr. Carlos Ostolaza for completing the details concerning this obscure paper.

Trichocereus santiaguensis (SPEGAZZINI) BACKEBERG
Hordenine (10-50% of the 1-10 mg of total alkaloids/ 100 grams fresh)
AGURELL et al. 1971b [commercial sources in Germany & the Netherlands]
Tyramine (10-50% of 1-10 mg of total alkaloids/ 100 grams fresh)
AGURELL et al. 1971b
Trichocereus santiaguensis is considered to be conspecific with T. spachianus. HUNT 2006

Trichocereus schickendantzii (WEBER) BRITTON & ROSE
N-Methyltyramine (trace)
AGURELL 1969b
Hordenine (over 50% of 1-10 mg total alkaloids/ 100 gm fresh)
AGURELL 1969b [Obtained via European commercial sources]
Trichocereus schoenii Rauh & Backeberg
Mescaline was isolated from three wild Peruvian collections:
- 0.22% Cotahuasi, La Unión, Arequipa (June)
- 0.20% Pampacola, Castilla, Arequipa (July)
- 0.14% Huambo, Arequipa (April)
All of above from **Serrano 2008 & Chuno et al. 2009** (dried outer green tissue; all percentages by dry weight)
See also the work of **Choquenaira et al. 2007**
Trichocereus schoenii is now merged with **T. cuzcoensis**.

Trichocereus scopulincola Ritter
0.85% Grown from FR 991 seed by NMCR
Obunbede 2010 (dried outer green tissue)
Despite some earlier attempts to reject this as an invalid species, Hunt recognizes it as a valid **Echinopsis** species: **Echinopsis scopulicola** (Ritter) Mottram - presenting as the describer someone who has neither written nor published a taxonomic description! [Personal communication with Roy Mottram.]
First demonstrated to contain mescaline based on human bioassays.
See **Activity Notes**.
T. scopulicola is presently suspected of being extinct in the wild.

Trichocereus scopulincola Ritter See as **Trichocereus scopulincola Ritter**.
This descriptionless name appeared in Backeberg’s **Cactus Lexicon**, seemingly to bring the spelling into line with the other **Trichocereus** species. Backeberg commented that no description was available. Evidently Backeberg’s dislike/hatred of Ritter caused him to not be able to obtain any of Ritter’s three published descriptions for this species.

Trichocereus scottsbeggi Backeberg
N-Methyltyramine (1-10% of 10-50 mg of total alkaloids/ 100 grams fresh) **Agurell et al. 1971b**
Hordenine (Over 50% of the 10-50 mg of total alkaloids/ 100 grams fresh) **Agurell et al. 1971b** [Obtained via commercial source in Germany.]

Trichocereus smrzianus Reported to be “psychoactive” but “different than San Pedro” **Anonymous** in correspondence 1998. Needs an analysis.

Trichocereus spachianus (Lemaire) Riccobono
AKA “White torch”
Tyramine (trace) **Mata et al. 1972**, also reported in **Mata & McLaughlin 1976**. Not observed by **Agurell 1969b**.
N-Methyltyramine (0.007% dry wt.) **Mata et al. 1972**, also reported in **Mata & McLaughlin 1976**; Not observed by **Agurell 1969b**
Hordenine (over 50% of 1-10 mg total alkaloids/ 100 gm fresh) **Agurell 1969b** [Obtained via European commercial sources.] Also reported in **Mata & McLaughlin 1976**. [The cited reference **Mata et al. 1980** (which appears listed for this compound) actually intended to indicate **Mata & McLaughlin 1980** but it does not include this species.]
Candicine (%? **Ritti 1950, Ritti 1954 & Ritti & Castillon:** all citing private communication from **Haagen-Smit & Olivier.** [**Agurell 1969b & Mata & McLaughlin 1976** have been listed with regards to this compound but neither detected it. **Agurell specifically did not look for quaternary compounds; both simply mentioned a prior report;** 0.095% by dry weight: **Davis et al. 1983**]
[Mescaline has been erroneously listed for this species; the reference cited, **Pumangura & McLaughlin 1982,** [i.e. **Pumangura et al. 1982a**] specifically stated that they DID NOT detect the presence of mescaline.]
Reported to contain Kaempferol & Quercetin (Flavonols) **Richardson 1978** (based on acid hydrolysis).
See comments in **Activity Notes**.

Trichocereus sp. N.Chile (Torres & Torres)
Presence of Mescaline has been proven by human bioassay **Torres & Torres 1995**.
Lacking published analysis.

Trichocereus sp. SS02 (a **T. bridgesii** form) Reported to be a reliably effective form in multiple human bioassays; presence of mescaline demonstrated in GC-MS (seemingly as sole alkaloid?) Needs taxonomic study and an analysis. **Anonymous 1999 & 2000.**

There are many named and unnamed **Trichocereus** cultivars, forms or maybe even some species that are in need of analysis and/or have been determined to be active in human bioassays.
See **Part B San Pedro** for details and many images.
The book is available and there is a pdf download at http://www.largelyaccurateinformationmedia.com/SP.html

Trichocereus strigosus (Salm-Dyck) Br. & R.
Tyramine (trace) **Nieto et al. 1982**
Hordenine (Sole alkaloid present. 10-50 mg/ 100 grams fresh) **Agurell et al. 1971b** [Commercially obtained greenhouse material grown in Germany]. (0.139% dry wt.: **Nieto et al. 1982**) Mescaline (trace) **Nieto et al. 1982**
Candicine (0.11% dry wt.) **Nieto et al. 1982** [Material from Argentina; Medoza and San Juan provinces]
[One unidentified base also reported. **Nieto et al. 1982**]

Trichocereus tacaquirensis Ritter Needs an analysis Considered a synonym of **T. peruvianus** by Hunt

Trichocereus tacauiensis (Vauwel) Cardenas ex Backeberg
Needs an analysis. **Trichocereus taquimbalenis Cardenas** is now considered a subspecies of **E. tacauiensis** by Hunt.

Trichocereus taquimbalenis Cardenas
3-Methoxytyramine. (trace) **Agurell et al. 1971b** [Obtained via commercial source in the Netherlands.] (all % are as fresh weight)
Cactus Chemistry: By Species

See comments in Activity Notes.

Trichocereus terscheckii (Parmentier) Britton & Rose
92-95% water by weight Reti & Castillón 1951
Total alkaloid content varied between 0.25-1.2% dry wt. Reti & Castillón 1951 [Collected from the wild in Argentina]
3,4-Dimethoxyphenethylamine Observed as minor alkaloid by Shulgin in GC-MS
N-Methyl-3,4-dimethoxyphenethylamine Observed as minor alkaloid by Shulgin in GC-MS
N,N-Dimethyl-3,4-dimethoxyphenethylamine Observed as minor alkaloid by Shulgin in GC-MS
Mescaline (5-25+ mg per 100 grams fresh.) (Major alkaloid) Agurell 1969b [Obtained via European commercial sources]; [Also noted in Agurell 1969a: “contains rather exclusively mescaline”] (Minor alkaloid [Reported a yield of 4 gm. from 10 kg. dry: 0.04% dry wt]; sometimes entirely absent in higher alkaloid material) Reti & Castillón 1951. Found to be the major alkaloid by Shulgin in GC-MS (material from NW Argentina)
N-Methylmescaline Observed by Shulgin in GC-MS
Anhalonine (trace detected) Reti & Castillón 1951. Shulgin unable to detect in GC-MS
Needs further analysis. Unpublished GC-MS has variously shown mescaline as the only alkaloid, the major of multiple alkaloids or only a minor alkaloid.
(Conflicting analysis seems to be the norm. An hplc example taken from the Internet: 0.061% [sic] mescaline content by dry wt. Of 0.72% total alkaloid: 16% was mescaline [0.11%], 44% was Anhalonine or some PEA 0.32%, 30% was either methyl or dimethyl mescaline [0.22%] and 10% was an unidentified PEA [0.07%]. There appears to be mathematical errors in this account so it should all be viewed with caution. For instance 16% of 0.72 is 0.11 not 0.061.)
The claim of DMT being in this cactus resulted from an unfortunate typo by Schultes & Hofmann; intending N,N-Dimethyltryptamine. This error has sadly taken on a life of its own via the counterculture rumor mills.
See comments in Activity Notes.

Trichocereus thelegonoides (Spegazzini) Britton & Rose
Hordenine (Sole alkaloid; 10-50 mg/100 grams fresh) Agurell et al. 1971b [Obtained via commercial source in Germany]

Trichocereus thelegonus (Weber) Britton & Rose
N-Methyltryptamine (trace) Agurell et al. 1971b
Hordenine (Over 50% of the 10-50 mg of total alkaloids/100 grams fresh) Agurell et al. 1971b [Obtained via the Kew Royal Botanical Gardens & a commercial source in Germany]

Trichocereus torataensis Ritter. Needs an analysis Considered a synonym of *T. peruviana* by Hunt

Trichocereus tulhuayacensis Ochoa
Claim for the presence of mescaline is made by Caycho Jiménez 1977 (page 91) but he cites no reference to support his assertion.
See comments in Activity Notes.

Trichocereus tunariensis Cardenas
Tyramine (10-50% of 10-50 mg of total alkaloids/100 grams fresh) Agurell et al. 1971b
Hordenine (10-50% of the 10-50 mg of total alkaloids/100 grams fresh) Agurell et al. 1971b [Obtained via commercial source in the Netherlands]

Trichocereus uyupampensis Backeberg
0.053% Ogunbodede 2010
UC records indicated this was grown from a clone deposited at Monaco by Backeberg. (Analysis using dried outer green tissue)
I presently (2012) believe this plant to be misidentified. The results of the analysis performed by Ogunbodede were accurate but the identification of this species by Monaco was not.

Trichocereus validus (Monville) Backeberg
Mescaline (Over 25 mg per 100 grams fresh.) Agurell et al. 1971b [Obtained via the Kew Royal Botanical Gardens]
Note that there are SEVERAL unrelated plants stuffed into this name as represented in horticulture. NOT synonymous with Echinopsis valida which is short and clumping. It has been uselessly redesignated as Echinopsis sp. by Hunt. The stout, taller columnar form apparently rarely offsets, and is MOST LIKELY what was analyzed by Agurell. Its not possible to know with any certainty.
Seemingly without further comment or a reference, Hunt inexplicably refers to this as =? *T. uyupampensis*.

Echinopsis forbesii was said to be synonymous with Echinopsis valida Monville by Britton & Rose

Trichocereus terscheckii was said to be synonymous with Echinopsis valida Monville in Kreuzinger 1935

Trichocereus vollenianus Backeberg
Mescaline (traces by dry weight) Siniscalco 1983

Trichocereus volcanensis Lack an analysis

Trichocereus werdermannianus Backeberg
Tyramine (trace) Agurell 1969a and 1969b
3-Methoxytryptamine (trace) Agurell 1969b
3,4-Dimethoxyphenethylamine (1-10% of 10-50 mg total alkaloids/100 gm fresh) Agurell 1969b [Obtained via European commercial sources]
4-Hydroxy-3,5-dimethoxyphenethylamine (trace)
A comment on the state of the genus Turbinicarpus.

Many members of this genus have been repeatedly shuffled and recombined as various varieties, subspecies and forms of each other with seemingly little to no agreement with earlier workers. This seemingly constant revision with its novel recombinations of former species within one species or another (and the repetition of the same but with totally different subspecific assignments) is a major source of the confusion in horticulture; (especially among those growers who disdain the use of binomials). It is also a major source of the assorted labeling inconsistencies that the careful reader will notice below. We have left all Turbinicarpus depicted AS they were labeled (altering only their subspecific placements for the sake of uniformity) since all are either in the collections of serious Turbinicarpus collectors/growers or botanical gardens. We are certainly not qualified to sort out the taxonomic mess known as the genus Turbinicarpus but look forward to the day that DNA work begins to help set it on a more sound basis.

Our choices of synonyms used do not indicate our agreement with them, we have simply attempted to present this in a manner enabling the reader to see what analytical work has been done. We suggest that any taxonomic treatments of the genus or relationships within it be viewed with a healthy dose of caution pending DNA work.

Another problematic issue regards the fact that most of the Turbos are highly variable based on conditions of growth and that European labelings frequently conflict with the presented identifications of North American horticultural material. We therefore present the following, largely, as they were labeled. Caveat lector!

Turbinicarpus alonsoi Glass & Arias

(Trace detected)

- N-Methyltyramine (0.0052 ± 0.0008%)
- Hordenine (0.0048 ± 0.0008%)
- N-Methyl-3,4-dimethoxyphenethylamine (0.0020 ± 0.0005%)
- Pellotine (0.0075 ± 0.0009%)

[All Turbinicarpus species analyzed by Dr. Starha were seed grown in Czechoslovakian greenhouses.]

Turbinicarpus bonatzii G.Frank

Needs an analysis.

Turbinicarpus dickisoniae (Glass & Foster) Glass & Hofer See as Turbinicarpus schmiedickeanus ssp. dickisoniae

Turbinicarpus flaviflorus G.Frank & Lau See as Turbinicarpus schmiedickeanus ssp. flaviflorus

Turbinicarpus gracilis Glass & Foster See as Turbinicarpus schmiedickeanus ssp. gracilis

Turbinicarpus hoferi Luethy & Lau

Needs an analysis.

Turbinicarpus laui Glass & Foster

Needs an analysis.

Turbinicarpus jauernigti G.FRANK

Needs an analysis.

Turbinicarpus klinkerianus BACKEBERG & H.J.JACOBSEN See as Turbinicarpus schmiedickeanus ssp. klinkerianus

Turbinicarpus krainzianus (G.FRANK) BACKEBERG See as Turbinicarpus pseudomacrochele ssp. krainzianus

Turbinicarpus krainzianus var. minimus See as Turbinicarpus pseudomacrochele ssp. krainzianus f. minima

Turbinicarpus laussleri

Needs an analysis.

Turbinicarpus lilinkeudus

Needs an analysis.

Turbinicarpus lophophoroides (WERDERMANN) BUXBAUM & BACKEBERG

- Phenethylamine (1.04% ± 0.27) of total alkaloid fraction of Over 500 mg total alkaloids per 100 gm of fresh plant)
- Tyramine (1.82% ± 0.17) of total alkaloid fraction of Over 500 mg total alkaloids per 100 gm of fresh plant)
- N-Methyltyramine (0.13% ± 0.11) of total alkaloid fraction of Over 500 mg total alk./ 100 gm of fresh)
- Hordenine (91.69% ± 0.54) of total alkaloid fraction of Over 500 mg total alkaloids per 100 gm of fresh plant)
- Mescaline (Trace detected)
- N-Methylmescaline (0.51% ± 0.11) of total alkaloid fraction of Over 500 mg total alk./ 100 gm of fresh)
- N,N-Dimethylmescaline (Trace detected)
- O-Methylanhalidine (0.55% ± 0.02) of total alkaloid frac-
Anhalinine (0.15% ± 0.08) of total alkaloid fraction of Over 500 mg total alkaloids per 100 gm of fresh plant
Anhalonidine (2.37% ± 0.12) of total alkaloid fraction of Over 500 mg total alkaloids per 100 gm of fresh plant
Pellotine (0.46% ± 0.08) of total alkaloid fraction of Over 500 mg total alkaloids per 100 gm of fresh plant

Anhalinine (2.88% ± 0.15) of total alkaloid fraction of over 500 mg total alkaloids per 100 gm of fresh plant

Turbinicarpus macrochele (Werdermann) Buxbaum & Backberg
See as Turbinicarpus jauernigii (Frank) Batta & Zanovello
See as Turbinicarpus jauernigii
Turbinicarpus macrochele var. polaskii P.Lechner & Jantschky
See as Turbinicarpus schmiedickeanus f. polaskii
Turbinicarpus macrochele var. schwarzii f. polaskii Kladivova
See as Turbinicarpus schmiedickeanus f. polaskii
Turbinicarpus polaskii Backberg See as Turbinicarpus schmiedickeanus f. polaskii

Turbinicarpus panarito Needs an analysis.

Turbinicarpus pseudomacrochele (Backberg) F.Buxbaum & Backberg
Hordenine (Sole alkaloid. 1-10 mg of total alkaloids/ 100 gm. fresh.) Bruhn & Bruhn 1973

Turbinicarpus pseudomacrochele ssp. krainzianus (G.Frank) Glass & Foster
Phenethylamine (1.12% ± 0.13) of total alkaloid fraction of 250-500 mg total alkaloids per 100 gm of fresh plant
Tyramine (0.98% ± 0.18) of total alkaloid fraction of 250-500 mg total alkaloids per 100 gm of fresh plant
N-Methyltyramine (Trace detected) [Not listed in Štarha 2001c]
Hordenine (49.60% ± 0.55) of total alkaloid fraction of 250-500 mg total alkaloids per 100 gm of fresh plant
Mescaline (2.48% ± 0.19) of total alkaloid fraction of 250-500 mg total alkaloids per 100 gm of fresh plant
N-Methylmescaline (3.27% ± 0.09) of total alkaloid fraction of 250-500 mg total alk./ 100 gm of fresh plant
N,N-Dimethylmescaline (2.89% ± 0.15) of total alkaloid fraction of 250-500 mg total alk./ 100 gm of fresh plant
[N-Methyltyramine (Trace detected) [Not listed in Štarha 2001c but the only citation given is Štarha et al. 1999c which does not support it.] O-Methylaminalradine (0.77% ± 0.04) of total alkaloid fraction of 250-500 mg total alk./ 100 gm of fresh plant
Anhalinine (29.24% ± 0.04) of total alkaloid fraction of 250-500 mg total alkaloids per 100 gm of fresh plant
Anhalonidine (2.44% ± 0.13) of total alkaloid fraction of 250-500 mg total alkaloids per 100 gm of fresh plant
Pellotine (0.36% ± 0.08) of total alkaloid fraction of 250-500 mg total alkaloids per 100 gm of fresh plant

Türkiye (0.46% ± 0.08) of total alkaloid fraction of Over 500 mg total alkaloids per 100 gm of fresh plant

Hordenine (Over 50% of over 50 mg of total alkaloids/ 100 gm. fresh.) Bruhn & Bruhn 1973
Phenethylamine (0.98% ± 0.12) of total alkaloid fraction of over 500 mg total alkaloids per 100 gm of fresh plant
Tyramine (3.18% ± 0.19) of total alkaloid fraction of over 500 mg total alkaloids per 100 gm of fresh plant
N-Methyltyramine (25.15% ± 1.21) of total alkaloid fraction of over 500 mg total alkaloids per 100 gm of fresh plant
Hordenine (62.11% ± 2.42) of total alkaloid fraction of over 500 mg total alkaloids per 100 gm of fresh plant
N,N-Dimethylmescaline (Trace detected)
O-Methylaminalradine (1.92% ± 0.15) of total alkaloid fraction of over 500 mg total alkaloids per 100 gm of fresh plant

Anhalinine (2.88% ± 0.15) of total alkaloid fraction of over 500 mg total alkaloids per 100 gm of fresh plant

Turbinicarpus pseudomacrochele (Backberg) G.Frank Needs an analysis.

Turbinicarpus pseudomacrochele ssp. krainzianus (G.Frank) Glass & Foster
Phenethylamine (1.12% ± 0.13) of total alkaloid fraction of 250-500 mg total alkaloids per 100 gm of fresh plant
Tyramine (0.98% ± 0.18) of total alkaloid fraction of 250-500 mg total alkaloids per 100 gm of fresh plant
N-Methyltyramine (Trace detected) [Not listed in Štarha 2001c]
Hordenine (49.60% ± 0.55) of total alkaloid fraction of 250-500 mg total alkaloids per 100 gm of fresh plant
Mescaline (2.48% ± 0.19) of total alkaloid fraction of 250-500 mg total alkaloids per 100 gm of fresh plant
N-Methylmescaline (3.27% ± 0.09) of total alkaloid fraction of 250-500 mg total alk./ 100 gm of fresh plant
N,N-Dimethylmescaline (2.89% ± 0.15) of total alkaloid fraction of 250-500 mg total alk./ 100 gm of fresh plant
[N-Methyltyramine (Trace detected) [Not listed in Štarha 2001c but the only citation given is Štarha et al. 1999c which does not support it.] O-Methylaminalradine (0.77% ± 0.04) of total alkaloid fraction of 250-500 mg total alk./ 100 gm of fresh plant
Anhalinine (29.24% ± 0.04) of total alkaloid fraction of 250-500 mg total alkaloids per 100 gm of fresh plant
Anhalonidine (2.44% ± 0.13) of total alkaloid fraction of 250-500 mg total alkaloids per 100 gm of fresh plant
Pellotine (0.36% ± 0.08) of total alkaloid fraction of 250-500 mg total alkaloids per 100 gm of fresh plant

Türkiye (0.46% ± 0.08) of total alkaloid fraction of Over 500 mg total alkaloids per 100 gm of fresh plant

Hordenine (Over 50% of over 50 mg of total alkaloids/ 100 gm. fresh.) Bruhn & Bruhn 1973
Phenethylamine (0.98% ± 0.12) of total alkaloid fraction of over 500 mg total alkaloids per 100 gm of fresh plant
Tyramine (3.18% ± 0.19) of total alkaloid fraction of over 500 mg total alkaloids per 100 gm of fresh plant
N-Methyltyramine (25.15% ± 1.21) of total alkaloid fraction of over 500 mg total alkaloids per 100 gm of fresh plant
Hordenine (62.11% ± 2.42) of total alkaloid fraction of over 500 mg total alkaloids per 100 gm of fresh plant
N,N-Dimethylmescaline (Trace detected)
O-Methylaminalradine (1.92% ± 0.15) of total alkaloid fraction of over 500 mg total alkaloids per 100 gm of fresh plant

Anhalinine (2.88% ± 0.15) of total alkaloid fraction of over 500 mg total alkaloids per 100 gm of fresh plant

Turbinicarpus pseudomacrochele (Backberg) G.Frank Needs an analysis.
Turbinicarpus schmiedickeanus ssp. dickisoniae

(Glass & Foster) N.P.Taylor

Phenethylamine (1.70% ± 0.15) of total alkaloid fraction of 250-500 mg total alkaloids per 100 gm of fresh plant

Tyramine (2.59% ± 0.13) of total alkaloid fraction of 250-500 mg total alkaloids per 100 gm of fresh plant

N-Methylltyramine (0.51% ± 0.02) of total alkaloid fraction of 250-500 mg total alkaloids per 100 gm of fresh plant

N-Methyltyramine (Trace detected) [Not listed in Štárha 2001c]

Hordenine (42.45% ± 0.45) of total alkaloid fraction of 250-500 mg total alkaloids per 100 gm of fresh plant

Mescaleine is also listed in Štárha 2001c but the only citation given is Štárha et al. 1999c

O-Methylanhalidine (1.42% ± 0.30) of total alkaloid fraction of 250-500 mg total alkaloids per 100 gm of fresh plant

Anhalinine (35.42 ± 0.85% of total alkaloid content)

O-Methylanhalidine (2.50 ± 0.30% of total alkaloid content)

N-Methylmescaline (Trace detected) [Not listed in Štárha 2001c]

Hordenine (52.15 ± 0.40% of total alkaloid content)

N-Methylmescaleine (trace)

O-Methylanhalidine (2.78 ± 0.40% of total alkaloid content)

Anhalinine (37.15 ± 0.90% of total alkaloid content)

Pellotine (0.43 ± 0.15% of total alkaloid content)

Anhalonidine (trace)

Štárha 2001c cited Štárha et al. 2000

Turbinicarpus schmiedickeanus ssp. flaviflorus

(Frank & Lau) Glass & Foster

Phenethylamine (1.01% ± 0.21) of total alkaloid fraction of 100-250 mg total alkaloids per 100 gm of fresh plant

Tyramine (3.08% ± 0.08) of total alkaloid fraction of 100-250 mg total alkaloids per 100 gm of fresh plant

N-Methylltyramine (Trace detected) [Not listed in Štárha 2001c]

Hordenine (92.05% ± 0.71) of total alkaloid fraction of 100-250 mg total alkaloids per 100 gm of fresh plant

Mescaline (Trace detected)

N-Methylmescaleine (Trace detected)

O-Methylanhalidine (2.89% ± 0.46) of total alkaloid fraction of 100-250 mg total alkaloids per 100 gm of fresh plant

Anhalinine (Trace detected)

Anhalonidine (0.88% ± 0.12) of total alkaloid fraction of 100-250 mg total alkaloids per 100 gm of fresh plant

Pellotine (0.15% ± 0.07) of total alkaloid fraction of 100-250 mg total alkaloids per 100 gm of fresh plant

Štárha et al. 1999c

Turbinicarpus schmiedickeanus ssp. gracilis

(Glass & Foster) Glass

Tyramine (4.98 ± 0.28% of total alkaloid content)

N-Methylltyramine (trace)

Hordenine (48.15 ± 0.97% of total alkaloid content)

O-Methylanhalidine (2.48 ± 0.42% of total alkaloid content)

Anhalinine (20.69 ± 1.12% of total alkaloid content)

Pellotine (7.92 ± 0.56% of total alkaloid content)

Anhalonidine (trace)

Štárha 2001c cited Štárha 2001b

Turbinicarpus schmiedickeanus ssp. klinkerianus

(Backeberg & Jacobson) N.P.Taylor

Tyramine (2.95 ± 0.15% of total alkaloid content)

N-Methylltyramine (trace)

Hordenine (52.15 ± 0.40% of total alkaloid content)

N-Methylmescaleine (trace)

O-Methylanhalidine (2.78 ± 0.40% of total alkaloid content)

Anhalinine (37.15 ± 0.90% of total alkaloid content)

Pellotine (0.43 ± 0.15% of total alkaloid content)

Anhalonidine (trace)

Štárha 2001c cited Štárha et al. 2000

Turbinicarpus schmiedickeanus ssp. macrochele

(Werdermann) Glass & Foster

Tyramine (2.90 ± 0.15% of total alkaloid content)

N-Methylltyramine (trace)

Hordenine (49.01 ± 1.38% of total alkaloid content)

O-Methylanhalidine (2.50 ± 0.30% of total alkaloid content)

Anhalinine (35.42 ± 0.85% of total alkaloid content)

Pellotine (0.03 ± 0.10% of total alkaloid content) [Given on p. 89 but not included in its by-species listing on pp. 51-52]

Anhalonidine (trace)

Štárha 2001c cited Štárha 2001b

Turbinicarpus schmiedickeanus ssp. polaskii

(Shurly) Panarotto

See as Turbinicarpus schmiedickeanus ssp. schwarzii f. rubriflorus

Turbinicarpus schmiedickeanus ssp. schwarzii

(Shurly) N.P.Taylor

Phenethylamine (1.07% ± 0.42) of total alkaloid fraction of 250-500 mg total alkaloids per 100 gm of fresh plant

Tyramine (2.92% ± 0.25) of total alkaloid fraction of 250-500 mg total alkaloids per 100 gm of fresh plant

N-Methylltyramine (trace) [Not listed in Štárha 2001c]

Hordenine (48.81% ± 2.72) of total alkaloid fraction of 250-500 mg total alkaloids per 100 gm of fresh plant

Mescaline (1.26% ± 0.21) of total alkaloid fraction of 250-500 mg total alkaloids per 100 gm of fresh plant

N-Methylmescaleine (0.98% ± 0.24) of total alkaloid fraction

http://www.largelyaccurateinformationmedia.com
Cactus Chemistry: By Species

of 250-500 mg total alkaloids per 100 gm fresh)
N,N-Dimethylmescaline (Trace detected) [Not listed in Štarha 2001c]
O-Methylanhalidine (2.82% [± 0.41] of total alkaloid fraction of 250-500 mg total alkaloids per 100 gm of fresh plant)
Anhalidine (39.57% [± 1.14] of total alkaloid fraction of 250-500 mg total alkaloids per 100 gm of fresh plant)
Anhalonidine (0.52% [± 0.11] of total alkaloid fraction of 250-500 mg total alkaloids per 100 gm of fresh plant)
Pellotine (0.41% [± 0.11] of total alkaloid fraction of 250-500 mg total alkaloids per 100 gm of fresh plant)
Štarha et al. 1999c

Turbinicarpus schmiedickeanus ssp. schwarzi f. rubriflorus
Tyrmine (2.90 ± 0.12% of total alkaloid content)
Hordenine (48.99 ± 0.40% of total alkaloid content)
O-Methylanhalidine (2.51 ± 0.25% of total alkaloid content)
Anhalidine (37.58 ± 1.83% of total alkaloid content)
Pellotine (0.33 ± 0.10% of total alkaloid content)
Štarha 2001c: the actual primary source citation is unclear to me. (It was not given separately in the by-species listing. The data above appears on page 89. The by-species listing for schwarzi appears to imply that Štarha 1999 and/or Štarha et al. 1999c was the reference(s) but neither one is listed for O-Methylanhalidine or for Pellotine in the by-species entry on page 52.)

Turbinicarpus schwarzi (Shurly) Backeberg
See as Turbinicarpus schmiedickeanus var. schwarzi

Turbinicarpus swobodae Diers & Esteves Pereira
Needs an analysis.
Turbinicarpus valdezianus (Moeller) Glass & Foster
Needs an analysis.

Wigginsia arechavaletai
Mucilage determined to be comprised of Arabinose (2.1%), Galactose (18.3%), Galacturonic acid (20.8%), Rhamnose (51.6%) & Xylose (2.7%).
Moyna & DiFabio 1978 (Analyzed MAM 1694)

Wigginsia erinacea (Haworth) D.M.Porter
Hordenine (%?) DeVries et al. 1971
Mucilage polysaccharide was found to be 0.31% percentage of total weight of fresh plant.
Uronic acid content of polysaccharide: 51%
Rhamnose: arabinose, galactose (3.7:1:2.7)
Mindt et al. 1975

Wigginsia macrocantha (Arechavaleta) D.M.Porter
Hordenine (%?) DeVries et al. 1971

Wigginsia tephracantha (Link & Otto) D.M.Porter
Hordenine (%?) DeVries et al. 1971
Weddelite & α-quartz were identified as druses, bipyramids (few) & crystal sand (abundant).
Acacia berlandieri Bentham

<table>
<thead>
<tr>
<th>Compound</th>
<th>Spring (all via gc-ms) ppm</th>
<th>Late fall ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenethylamine</td>
<td>991.3</td>
<td>1390.0</td>
</tr>
<tr>
<td>N-Methylphenethylamine</td>
<td>1702.7</td>
<td>3742.2</td>
</tr>
<tr>
<td>N,N-Dimethylphenethylamine</td>
<td>99.1</td>
<td>604.4</td>
</tr>
<tr>
<td>N,N,N-Trimethylphenethylammonium hydroxide*</td>
<td>nd</td>
<td>23.6</td>
</tr>
<tr>
<td>Amphetamine</td>
<td>3.1</td>
<td>10.1</td>
</tr>
<tr>
<td>Memphetamine</td>
<td>20.1</td>
<td>11.5</td>
</tr>
<tr>
<td>N,N-Dimethyl-α-methylphenethylamine</td>
<td>45.6</td>
<td>229.7</td>
</tr>
<tr>
<td>(p)-Hydroxyamphetamine</td>
<td>8.0</td>
<td>7.3</td>
</tr>
<tr>
<td>(p)-Methoxyamphetamine</td>
<td>nd</td>
<td>35.7</td>
</tr>
<tr>
<td>Tyramine</td>
<td>367.2</td>
<td>1263.4</td>
</tr>
<tr>
<td>N-Methyltyramine</td>
<td>188.5</td>
<td>745.7</td>
</tr>
<tr>
<td>Hordenine</td>
<td>9.2</td>
<td>333.1</td>
</tr>
<tr>
<td>Candenine*</td>
<td>nd</td>
<td>35.1</td>
</tr>
<tr>
<td>Dopamine</td>
<td>3.6</td>
<td>25.3</td>
</tr>
<tr>
<td>N-Methyldopamine</td>
<td>1.9</td>
<td>10.8</td>
</tr>
<tr>
<td>N,N-Dimethyldopamine</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>3-Methoxytyramine</td>
<td>2.6</td>
<td>15.3</td>
</tr>
<tr>
<td>Mescaline</td>
<td>4.9</td>
<td>35.7</td>
</tr>
<tr>
<td>N-Methylmescaleine</td>
<td>3.2</td>
<td>30.2</td>
</tr>
<tr>
<td>Trichocereine</td>
<td>nd</td>
<td>28.1</td>
</tr>
<tr>
<td>3,4,5-Trimethoxyphenethyl-N,N,N-trimethylammonium hydroxide*</td>
<td>nd</td>
<td>13.2</td>
</tr>
<tr>
<td>3,5-Dimethoxytyramine</td>
<td>2.7</td>
<td>43.4</td>
</tr>
<tr>
<td>3,4-Dimethoxy-5-hydroxyphenethylamine</td>
<td>11.4</td>
<td>40.9</td>
</tr>
<tr>
<td>(β)-Methoxy-3,4-dihydroxy-5-methoxyphenethylamine</td>
<td>nd</td>
<td>30.2</td>
</tr>
<tr>
<td>3,4-Dimethoxy-(α)-methyl-5-hydroxyphenethylamine</td>
<td>2.0</td>
<td>47.2</td>
</tr>
<tr>
<td>Nicotine</td>
<td>39.6</td>
<td>108.3</td>
</tr>
<tr>
<td>Nornicotine</td>
<td>19.2</td>
<td>72.5</td>
</tr>
<tr>
<td>Anhalamine</td>
<td>4.9</td>
<td>39.6</td>
</tr>
<tr>
<td>Anhalidine (N-Methylanhalamine)</td>
<td>2.9</td>
<td>40.9</td>
</tr>
<tr>
<td>Anhalonidine</td>
<td>2.7</td>
<td>46.8</td>
</tr>
<tr>
<td>Mimosine, methyl ester</td>
<td>10.6</td>
<td>24.2</td>
</tr>
<tr>
<td>3α-Cumyl-1,3,4-oxadiazolidine-2,5-dione</td>
<td>308.4</td>
<td>420.9</td>
</tr>
<tr>
<td>Nortriptyline</td>
<td>19.8</td>
<td>71.5</td>
</tr>
<tr>
<td>Musk ambrette</td>
<td>26.5</td>
<td>27.3</td>
</tr>
</tbody>
</table>

*Identity and amount present was inferred from the corresponding styrene

Clement et al. 1997

Acacia rigidula Bentham

<table>
<thead>
<tr>
<th>Compound</th>
<th>Spring (all via gc-ms) ppm</th>
<th>Late fall ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Cyclohexylethylamine</td>
<td>0.8</td>
<td>35.2</td>
</tr>
<tr>
<td>N-2-Cyclohexylethyl-N-methylamine</td>
<td>1.2</td>
<td>47.1</td>
</tr>
<tr>
<td>Phenethylamine</td>
<td>872.3</td>
<td>1135.7</td>
</tr>
<tr>
<td>N-Methylphenethylamine</td>
<td>2314.6</td>
<td>5264.8</td>
</tr>
<tr>
<td>N,N-Dimethylphenethylamine</td>
<td>123.6</td>
<td>724.5</td>
</tr>
<tr>
<td>(p)-Hydroxyamphetamine</td>
<td>2.1</td>
<td>6.9</td>
</tr>
<tr>
<td>(p)-Methoxyamphetamine</td>
<td>nd</td>
<td>15.7</td>
</tr>
<tr>
<td>Tyramine</td>
<td>459.1</td>
<td>1699.2</td>
</tr>
<tr>
<td>N-Methyltyramine</td>
<td>237.4</td>
<td>1237.6</td>
</tr>
<tr>
<td>Hordenine</td>
<td>6.4</td>
<td>533.8</td>
</tr>
<tr>
<td>Dopamine</td>
<td>8.9</td>
<td>36.1</td>
</tr>
<tr>
<td>N-Methyldopamine</td>
<td>0.5</td>
<td>8.2</td>
</tr>
<tr>
<td>N,N-Dimethyldopamine</td>
<td>11.2</td>
<td>44.6</td>
</tr>
<tr>
<td>3-Methoxytyramine</td>
<td>1.8</td>
<td>12.9</td>
</tr>
<tr>
<td>N-Methyl-3-methoxytyramine</td>
<td>3.4</td>
<td>28.4</td>
</tr>
<tr>
<td>3,4-Dimethoxy-5-hydroxyphenethylamine</td>
<td>11.4</td>
<td>184.7</td>
</tr>
<tr>
<td>Nicotine</td>
<td>39.6</td>
<td>108.3</td>
</tr>
<tr>
<td>Nornicotine</td>
<td>19.2</td>
<td>72.5</td>
</tr>
<tr>
<td>Anhalamine</td>
<td>4.9</td>
<td>39.6</td>
</tr>
<tr>
<td>Anhalidine</td>
<td>2.7</td>
<td>46.8</td>
</tr>
<tr>
<td>Mimosine, methyl ester</td>
<td>10.6</td>
<td>24.2</td>
</tr>
<tr>
<td>3α-Cumyl-1,3,4-oxadiazolidine-2,5-dione</td>
<td>308.4</td>
<td>420.9</td>
</tr>
<tr>
<td>Nortriptyline</td>
<td>19.8</td>
<td>71.5</td>
</tr>
<tr>
<td>Musk ambrette</td>
<td>26.5</td>
<td>27.3</td>
</tr>
</tbody>
</table>

*Identity and amount present was inferred from the corresponding styrene

β-Methoxy-3,4-dihydroxy-5-methoxyphenethylamine 4.6 22.1
3,4-Dimethoxy-\(α \)-methyl-5-hydroxyphenethylamine 5.3 61.4
Nicotine 45.8 152.4
Nornicotine 23.4 84.3

LEGUMINOSAE

These 3 plants are included simply because they are, so far, the only reported occurrences appearing in the literature for simple mescaline derivatives & a number of peyote alkaloids outside of the CACTACEAE. Be sure to read to the end.

Leaves, petioles & tender stems; samples fresh frozen. Collected Zavala County, Texas
Trouts Notes on Cactus Chemistry

Acacia rigidula Bentham continued

<table>
<thead>
<tr>
<th>Compound</th>
<th>ppm</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tryptamine</td>
<td>0.8</td>
<td>21.2</td>
</tr>
<tr>
<td>N-Methyltryptamine</td>
<td>4.6</td>
<td>54.9</td>
</tr>
<tr>
<td>N,N-Dimethyltryptamine</td>
<td>323.8</td>
<td>568.4</td>
</tr>
<tr>
<td>Anhalamine</td>
<td>9.6</td>
<td>48.7</td>
</tr>
<tr>
<td>Anhalidine (N-Methylanhalamine)</td>
<td>5.6</td>
<td>51.2</td>
</tr>
<tr>
<td>Anhalonidine</td>
<td>2.3</td>
<td>15.7</td>
</tr>
<tr>
<td>Peyophorine</td>
<td>3.8</td>
<td>43.4</td>
</tr>
<tr>
<td>Pipecolamide</td>
<td>872.8</td>
<td>978.2</td>
</tr>
<tr>
<td>3-Hydroxy-pipecolamide</td>
<td>241.6</td>
<td>353.1</td>
</tr>
<tr>
<td>1,4-Benzenediamine</td>
<td>104.8</td>
<td>129.6</td>
</tr>
<tr>
<td>4-Methyl-2-pyridinamine</td>
<td>341.5</td>
<td>567.3</td>
</tr>
</tbody>
</table>

Clement et al. 1998

It was brought to my attention by Sasha Shulgin that there were some odd discrepancies in the accounts of Clement. Despite repeated attempts to learn answers, apparently no one connected with authorship of this paper has been willing to respond to several professional researchers attempting to obtain clarification. Most glaring: not all the novel compounds that their paper claimed were synthesized as reference materials have a published synthesis (personal communication with Sasha).

More recent work, published in _PAwAl et al. 2013_, was unable to detect the presence of mescaline, mescaline derivatives or any of the purported amphetamines but it supported the prior analytical work by Camp _et al_. All of the other novel results in Clement’s accounts need a confirmation by someone or they should similarly be considered to be suspect.

Alhagi pseudalhagi (Bieberstein) Desvaux

<table>
<thead>
<tr>
<th>Compound</th>
<th>ppm</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenethylamine (0.0017%; 180 mg from 10.3 kg dry wt.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-Methylphenethylamine (0.0007%; 72 mg from 10.3 kg dry wt.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-Methylmescaline (8.7x10^-5%; 9 mg from 10.3 kg dry wt.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hordenine (0.00037%; 38 mg from 10.3 kg dry wt.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-Methyltryptamine (0.00011%; 11 mg from 10.3 kg dry wt.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coryneine (the N-trimethyl cation of Dopamine) [3,4-Dihydroxyphenethyltrimethyl ammonium (isolated as chloride/hydroxide)] (0.00027%; 28 mg from 10.3 kg dry wt.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salicifoline (the N-trimethyl cation of 3-methoxytyramine) [3-Methoxy-4-hydroxyphenethyltrimethylammonium (isolated as chloride)] (0.00012%; 12 mg from 10.3 kg dry wt.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dl-Salsolidine (0.00041%; 42 mg from 10.3 kg dry wt.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choline (0.002%; 222 mg from 10.3 kg dry wt.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betaine (Traces detected)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All % listed reflect the amount of base isolated from air dried and milled stems (Varanasi, India)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The roots were said to contain “essentially the same alkaloids but in different proportions”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Details were not included.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ghosal et al. 1974</td>
<td></td>
<td></td>
</tr>
<tr>
<td>See also Ghosal & Srivastava 1973a.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unlike the two papers by Clement _et al_. there is no reason to doubt Ghosal’s results. Shibnath Ghosal did quite meticulous work during his research career. Despite the problems, or perhaps because of them, results of Clement deserve to be revisited using the specialized sample collection techniques they purported to have used. It seems unlikely that amphetamines will be found but it is curious that one amphetamine (p-methoxy-amphetamine) has been reported from *Browningia candelaris*. Details and a reference are located under that species farther below.
Activity (& Mythology) Notes

The word ‘mythology’ appears in the title for an important reason. In the section that follows many medical and ethnomedicinal applications are mentioned. This is historical information that has been collected from the literature and the inclusions should not be regarded or assumed to mean that they are accurate or appropriate or effective in their recorded applications. None of this should this be viewed as a suggestion how to treat any medical conditions or as recommendation to employ any of these for any application. I believe that the error-to-fact ratio in this area of the published literature is disturbingly high. Ethnographic and anthropological accounts in particular may actually be mistakenly overlaying linear Western concepts onto comments made by nonlinear thinkers; especially when they assert hallucinogenic activity. If a worker reporting a particular claim did not include confirmation in the form of a known human bioassay, ideally their own so a meaningful report can be made, it needs to be regarded as only anecdotal hearsay. Some applications are better evaluated, even if they are just as poorly understood, such as the topical employment of a number of cacti as analgesics.

5 San Pedros

The “5 San Pedros” purportedly recognized by some Peruvian shamans (Personal communication with a correspondent in South America requesting anonymity) Photos to the immediate right & occurring later herein were used with permission.

These plants were said to have been collected in the vicinity of Matucana, Peru except for the one on the far right which was purported to be a *Bridgesii* from Huanuco. Attempts to obtain live cuttings including the dark *Pachanoi* second from the right procured the specimen that was analyzed by Ogunbodede. See comments and images for the one on the far left under Haageocereus acranthus.

See comments and images for the one on the far right under Lemaireocereus laetus and Lemaireocereus maticanense. I know little about them beyond the unconfirmed claim that they are said to be used by shamans in Peru as San Pedro. Additional photographs of the plants that were shipped from Peru are on the previous page.

Acanthocereus pentagonus

(This is now Acanthocereus tetragononus)

Antihelminthic activity (no detail or reference). SOULAI RE 1947

Has an edible fruit. STANLEY 1924: 906-907

Aporocactus flagelliformis

Dried flowers are used for “heart affections” in the form of an infusion. The juice of the stems is caustic and used internally as a vermifuge. This application is claimed to be dangerous. STANLEY 1924: 917

Pronounced antihelminthic activity.

Ariocarpus bravoanus

Ethanollic extract is used externally as analgesic in Mexico. ANONYMOUS 2000

Ariocarpus bravoanus ssp. hintonii

Lacks published analysis. Used as an externally applied analgesic in Mexico. ANONYMOUS 2000

Ariocarpus fissuratus

“peyote cimarrón” (see comments below)

“Sunami” (Tarahumara).

LUMHOLTZ 1902 claimed that an intoxicating drink was prepared from this species by the Tarahumara. The plant was said to be “even more powerful than *waname*” and used similarly. In the region of the headwaters of the Río Concho, PENNINGTON 1963 (p. 159) includes it as a “narcotic” cacti and noted that the expressed juice from Ariocarpus fissuratus was sometimes added to *tesquino* by the Tarahumara to “make the corn beer more enjoyable.” Calling it “peyote” HAVARD 1896 made a similar comment that it was eaten raw or added to liquor to increase the effects. It is not adequately clear though that Havard was not confusing this plant with West Texas peyote. STANLEY 1924 also refers to the use of this name but says it is incorrect.

Older tubercles are said to be smoked in Mexico for “mildly hallucinogenic effects” lasting several hours. ANONYMOUS 2000.

“Consumed fresh or ground in water, it was taken in the same manner as *Lophophora*. This “hikuli” was also used as a stimulant by the runners.” BYE 1979

While peyote cimarrón *sensu* Thord-Gray would appear to be a different plant, this has become its common name both in Mexico and among Western drug users. (STANLEY 1924 also gave this name) As recently as the late 1970s a person could find this cacti being offered for sale under that name by street vendors in Austin, Texas. While the anecdotal accounts of friends said they were the wrong plants that did not produce the same effects as peyote, they were being sold specifically intended for drug use purposes.

LUMHOLTZ 1902 also made the comment “Robbers are powerless to steal anything where *Sunami* calls soldiers” Chewed and placed upon bruises, bites and wounds. PENNINGTON 1963:186

Ariocarpus kotschoubeyanus

Ethanollic extract of whole plant used externally as analgesic for blows & bruises. http://www.ariocarpus.tsnet.co.net &
Sometimes collected by South Texas peyote distributors and the rare Huichol shaman is said to use 2 tubercles as an oral inebriant similarly to A. fissuratus. ER 1999

Ariocarpus retusus

Used for fever. JOHNSON 1999

Reported to be smoked as a recreational inebriant similarly to *Ariocarpus fissuratus.*

The rare Huichol shaman is said to use 2 tubercles as an oral dose after a 5 year apprenticeship. ANONYMOUS 2000

STANLEY 1924 notes the use of the name "peyote" but says that it is incorrect.

SOULAIRE 1947 commented that this species enjoys the same reputation in Mexico as *peyotl* but did not include a reference.

Huichol: *tsuwíri*

Furst comments that a person with an impure heart, meaning a person who has not properly purified themselves prior to their peyote journey may be tricked into thinking this plant was peyote “because it is capable of sorcery and deception.”

Furst was told by Huichols it was “very dangerous” to eat. Interestingly saying a person “who had a “Huichol heart” would not be fooled into doing so.”

Furst described the effects as being Datura-like and characterized by unpleasant delusions ranging from terrifying hallucinations to obsessions with sexual partners who had not been properly confessed prior to the pilgrimage.

“Afterwards they become more afflicted and frightened. Because they begin to see many things. Terrible, crazy things. Animals they see, animals which are poisonous... There before them a deep pit, very large, very dark. They jump into this pit, escaping from those animals. It is as if one had thrown these animals at them, great heaps of those snakes, great heaps of those scorpions, as if from a basketful of those animals. But no, there are no animals. There are no snakes. There are no scorpions. There is no pit. There is where he jumped, where he fell in his terror; there is no pit. Only the ground, only the sand with the cactus thorns which pierce him.”

FURST 1971

Astrophytum asterias

Called “peyote” according to STANLEY 1924

Sometimes collected by South Texas peyote distributors and given as good luck fetish to NAC members. Occasionally reported to be eaten by NAC members. TERRY 2007.

Anecdotal accounts from drug users report this species to be inactive. One of several cactus species sold by Austin, Texas street vendors in the 1970s as “peyote cimarrón.”

Astrophytum capricorne

Antimicrobial activities studied in GARZA PADRÓN 2010.

Astrophytum myriostigma

Called “peyote cimarrón” (in Durango) STANLEY 1924

Antimicrobial activities studied in GARZA PADRÓN 2010.

Jackrabbits are said to become visibly intoxicated from eating this plant and to develop a taste for it. ENTHEOGEN REVIEW 1998.

Brasiliopuntia brasiliensis

Roots have antipyretic properties.

The fruit gives a refreshing drink that is effective against scurvy.

Branches are used as a calming poultice for sciatica

Sap has been used for swelling of eyelids.

SOULAIRE 1947

An unidentified *Opuntia* species was claimed by Rivier & Lindgren to be incorporated into ayahuasca as an admixture called *tchai.* More recently Antonio Bianchi & Giorgio Samorini presented it to only be used alone, as a hallucinogen, due to the mixture being “too strong”. BIANCHI & SAMORINI 1993 included an image of the leaves on page 38 that suggested to this author that it was possibly a *Brasiliopuntia.*

Field work by R. Stuart in 2001 proved that the identity was *Brasiliopuntia brasiliensis.* Bob Wallace funded the research.

Stuart had been provided with the source’s contact information by Antonio Bianchi. Stuart went to Peru and undertook a course of introduction to the plant that was guided by the shaman. Stuart collected live material for propagation, and prepared herbarium vouchers - positively establishing the identity of the plant.

While in Peru Stuart also bioassayed it multiple times; first under guidance of the shaman and later independently. After repeated failures while working directly with the shaman, Stuart concluded anything he was experiencing was entirely due to the green tobacco that was being added to the expressed juice of the *tchai* leaf. Stuart tested this by secretly ingesting a much larger amount of the plant without tobacco and in combination with an MAOI.

Stuart proposed that the story may have been created to satisfy the questions of ethnobotanists desiring to be told of even more ayahuasca admixtures. Perhaps bolstered by noticing the ethnobotanists were not checking the claims with bioassays.

The interesting and entertaining account of his adventure can be found in the 2002 Entheogen Review.

Carnegiea gigantea

The saguaro is one of three plants that the Seri people of northwestern Mexico believe used to be human (FELGER & MOSER 1991).

There are ethnological reports of the saguaro being fermented into an intoxicating brew but none that reported it as hallucinogenic.

BRUHN 1971b discussed this 5% alcoholic drink made by the Papagos. Earlier in this century, DENSMORE 1929 was told by one native informant that the drink enabled him to receive songs but his other informants denied this.

BRUHN 1973 made a comment that it contains a potentially active alkaloid but that any indication of or reference to its use as a drug was lacking. Despite that, *Carnegiea gigantea* has been rumored for many years to be a psychedelic plant.
The responses to his online video are maybe the most of the Desert is a Mind Altering Herb! First told about this I could hardly believe it. The very Symbol been, all along, hidden right under our noses! When I was "Psychedelic Cactus!"

I just couldn't hold it in any longer! So, I was hesitant to leak this news…. but choActive Cactus?

The biggest exception I'm aware of is a youtube video asserting that a footlong section of a rib holds enough of a dose for "myself and some friends to enjoy the magic". That quote was from among the comments made by a person who appears to have first hand experience. It was taken from a youtube video posting on the “sugaro” by Daniel Vitalis. http://www.youtube.com/watch?v=6_-kNywVO2g.

Incredibly Vitalis urges viewers to preserve the secret: “So the Arizona state tree is a psychoactive plant. Shhhhh!” “We want to keep this kinda private.

If wanting to keep something private, posting a youtube video for the masses would not seem like it would be among the most effective approaches?

There were two positive accounts posted in response to that video but only one included details of the dose ingested. 2.5 tablespoons of the outer green layer sounded like a strong dose for that person and the physical distress he reported was echoed by several people on-line. One person at an on-line drug forum related a second-hand referenceless comment that 1 tablespoon of the green outer layer was believed to be a dose but included no more details.

Many aspects are reminiscent of Earl’s account of the cardon. In particular, the seeming fact that almost no one, in this case except Vitalis, sounded like they had more than one experience with it.

In an article on his website entitled “Ever Tried This PsychoActive Cactus?” Vitalis comments: “So, I was hesitant to leak this news…. but I just couldn’t hold it in any longer!” “Yes, its true... the Arizona State Flower grows atop a Psychedelic Cactus!” “This is one of those interesting Herbal Secrets that has been, all along, hidden right under our noses! When I was first told about this I could hardly believe it. The very Symbol of the Desert is a Mind Altering Herb!”

The responses to his on-line video are maybe the most intriguing part of this story.

The most common are people who insist the saguaro is not active (apparently based on never having heard this before); some are so certain of this they are aggressive, rude and hostile.

The second most common response is outrage for his cutting on a cactus that people love.

Among the replies to Vitale’s youtube video are two bioassay comments:

(typos left intact)

“I’m going to let everyone know, I ate the green inner bark. I felt the effects about 45 minutes after. It came on all at one and was so powerful it knocked me off my feet. Patterns of color everywhere, I saw my soul from the future if you can imagine. My spirit was young, playful, and charming to say the least. My spirit and I didn’t communicate with words.... But we were communicating. And the information he gave me was that life after death is by far the grandest adventure that could ever be experienced. He came to me out of a yellow void. He could have been easy to miss amongst all the colors and swirling patterns he was jumping up and down waiving his arms so that I could notice him!!! I had this experience today in the desert. Ate about two and a half tablespoons, threw up an hour later, had an anxiety attack, tried to walk back to my truck that was 2 miles away, took five steps and collapsed on all fours. Crawled to the nearest palo verde tree for shade and laid down. The effects were so nauseating I didn’t care if I laid on a rattlesnake, scorpion, or cholla. I will always remember this experience.”

Itsjames1

“I tried eating a couple tablespoons of the dark inner bark a year ago after seeing this video and reading the page on your website. I definitely noticed strong effects within half an hour of consumption. The world became extremely dreamlike and I drifted in and out of consciousness into a lucid dream state. (my first experience with lucid dreaming). Overall it was like no other psychoactive I’ve ever experienced, but the taste is worse than anything I’ve ever eaten.”

pigmiel

Posted on an on-line drug forum: “tried it once never again. My eye was twitching and I could feel if wiggle in a bad way when I looked around. Coordination totally fucked up. Felt like if was toxic to the nerves. My body was tense and shaking. Felt like I was starving but couldn’t eat. I was completely restless and couldn’t find a comfortable position. Kept getting the hiccups and feeling the cactus coming up. Finally puked. It feels like you have Parkinson’s or something. Mild visuals with some weird auditory hallucinations. Feels toxic overall it’s not worth it. Just thinking of that taste turns my stomach, that sandy textured bitter flesh.”

Eck

In Vooglebreinder a comment in Ratsch (1998, 155) is noted: “The Seri refer to saguaro as a peyote substitute, suggesting a possible psychoactive use for the plant, although no specifics concerning such a use are available.”

Unfortunately Ratsch employs this statement as a photo caption without any comment or a pertinent reference.

“The sap, which flows from the cactus when it has been wounded, is very bitter. When ingested, it typically produces nausea and dizziness (Bruhn & Lundstrom 1976, 197). CHECK COMMENT FROM psychotropia

Conflict seemingly exists surrounding analytical reports concerning the alkaloids that are present in Saguaro (Suggesting a high degree of variability based on presently undefined factors). It may just be a matter of age and part analyzed but the question is one for a future worker to resolve.

For a summarized overview:

Gigantine was only reported in substantial amounts during analysis of wild collected adult cacti and was found to be higher
Cephalocereus leucocephalus

Fruit used for producing tesgüino.
Pennington 1963

Cornopuntia reflexispina

Used traditionally for treating diarrhea. Johnson 1999

Cereus hexagonus

Duke cites Pittier for its use as diuretic and for enterrhagia.

Cereus jamaracu

Davet 2005 reported some antimicrobial and antifungal activity.

Cereus peruvianus

There are references to this plant as being hallucinogenic and as containing Mescaline.
Both of those assertions are clearly in error.
Rouhier 1927 is thus far the earliest instance of the mistaken claim that I can locate.
From page 73:

“Le Cereus peruvianus est le seul représentant de la famille des Cactées, à côté naturellement du Peyotl, qui ait été utilisé par les Indiens dans le sorcellerie.”

=Cereus peruvianus is the only representative of the family of the Cactaceae, next to of course peyote, which has been used by the Indians in witchcraft“

The reference to Cobo 1653: 451 on page 90 in Rouhier where he equates this species with “la diabolique huachuma” clearly indicates that this was based entirely on confusion with San Pedro (T. pachanoi).
Rouhier’s mistake was repeated in Hobschette 1929, Jacquet 1934 and also in Soulaire 1947. Hobschette and Soulaire both included Cobo’s description which leaves no doubt that Cobo was discussing San Pedro.
See more details (and Cobo’s comments) in Sacred Cacti Part B. San Pedro

Cereus quadrangularis

Duke cited Hartwell for its use in cancers.

Cactus Chemistry By Species

Cereus repandus

Duke lists uses for diarrhea and as shampoo or soap.

Cornopuntia reflexispina (Wiggers & Rollinson)

Backeberg

Diarrhea. Duke

Coryphantha compacta

Tarahumara names:
“bakana”; “bakānawa”; “wichuri”; “Santa Poli” (Bye 1979)
Bye reported finding this to be a powerful medicinal plant employed by Tarahumara shamans and feared by some of the Tarahumara. It was regarded as a form of hikuri and Bye suspects it to be referable to bakanawa in Bennett and Zingg. While an analysis of the Tarahumara “bakana” was said to be underway in Bye 1979, the results were either not published or the analysis was not performed.
Thord-Gray 1955 described “baka-nawa” as the most feared plant next to hi-kuri (p. 573)
“This is a quite a common small ball-cactus, apparently inoffensive but considered very ‘powerful medicine’.”
“In certain sections of Tarahumaraland this plant is used in place of peyote.” (Thord-Gray 1955: 84)
“...baka-nori has a ball shaped root and is used the same way. It may be the same plant.” (Thord-Gray 1955: 84)
The roots of both of these cacti are said to be “chewed and then rubbed on the legs of the runners to make them light of foot.” (Thord-Gray 1955: 345) Its application is often topical.
Bennett & Zingg commented that it was a common ball cactus they were cautioned not to touch. Their informant said it was second only to hikuli in power. Later in their account they say “The users consider this root more powerful than peyote.”
It was said to be used as a cure by shamans but that it could not be kept for more than three years by any one individual and needs to be sold or hidden after that point.
“The whole root is stirred in boiling water and used as a drink or application for many diseases. It is applied to the back for sickness in the lungs.”
“The small ball is chewed by the shaman, and the patient anointed with it wherever he feels pain.” “During a race the shaman continually chews a bit to have it ready for the runners who tire.”
“The plant is so strong that runners anoint themselves with it three days before an important race.”
The plant is said to be used by shamans, not peyoteros. The shamans make special trips to obtain it. Bennett & Zingg were told that the plant must be harvested on Friday and smoked with incense. Anyone is permitted to harvest or carry the cactus but it is mostly used by the shamans. The shamans carry small bits of the root in their bags. The root has many uses.
“Losing or burning one of the plants makes it very angry, and the offender is apt to become sick, turn crazy, or die. When one sleeps near the roots, he may hear singing as it moves about. By chewing it a bit, the singing becomes clearer.”
Coryphantha elephantidens

MS SMITH 2002 related that “A personal correspondent had observed C. elephantidens sold under the title of peyote in a Mexico City market. With a note of caution, my acquaintance went on to mention the possibility that many cacti, medicinal or not, are considered peyote to indigenous groups.”

From http://www.cactus-mall.com/mss/old.html

Coryphantha macromeris

RE:
Coryphantha macromeris (ENGELMANN) LEMAIRE

&
Coryphantha runyonii BRITTON & ROSE

Claims for mescaline’s presence in these two species appear in the literature erroneously.

BARCELÉUX presents C. macromeris as a mescaline containing cacti for no clear reason other than perhaps thinking rumors of use indicate that mescaline is present.

This species is purported to be a mild hallucinogen in its own right for reasons other than mescaline.

The claim purporting hallucinogenic activity first appeared in OTT 1976 who cited his own unpublished lab notes and Jerry McLaughlin, unpublished data, as his references. Schultes & Hofmann included Ott’s observation in Botany & Chemistry... and in Plants of the Gods. However, in his later works Ott began citing Schultes & Hofmann’s secondary reference (to him!) and ceased to cite either himself or Dr. McLaughlin.

Coryphantha runyonii appears to be listed seemingly for nothing more than being considered to be a varietal form of Coryphantha macromeris. Its reported analysis is commonly merged with that of C. macromeris in phytochemical databases.

Neither species has ever been found to contain mescaline.

Some counterculture ‘new age’ churches (such as “Crystal”) have been established declaring Coryphantha macromeris as their sacrament. The literature we have seen suggests that they might be less than informed. We have been unable to locate even a single person who has actually tried it.

The plant is also rumored to be one fifth as strong as the peyote cactus. Which I suspect is due to a comparison of the inerrancy of considering the norms of peyote for mescaline.

If a person experienced this and was not prepared, or was unprepared. While thinking it unlikely, the possibility of prolonged effects or after effects had been considered before hand, due to the warnings, and so, while concerned and in some spots challenged, I was not overly worried.

It was so incredibly good they didn’t want to share it and independently suppressed the knowledge or else it was not worth bothering to recount. I’d lean towards the latter notion myself.

Mescaline would seem obvious as a preferable alternative, especially as current law potentially considers macromerine to be a controlled substance thanks to the modern blanket of illegality.

My only bioassay involved around half a pound (nearly half of one large and very old plant) harvested while frozen in mid-winter.

Nausea was pronounced and lengthy (far worse on both counts than with peyote), there was a distinct pharmacological action but it was an insufficient dose to enable a hallucinogenic experience.

There were persistent side effects such as a weird feeling of unreality and a strange shiny plastic appearance to objects which lasted for several weeks after ingestion.

I found it more weird than anything else with an underlying sense of borderline irritability that reminded me more of ephedrine or Catha edulis leaf.

While it is clearly in need of further evaluation, there are no plans or desire to evaluate it at a higher level. [Its worth recalling that J.R. Briggs felt similarly after sampling a partial peyote button.]

The lengthy after effects causes some empathy for the assertion that permanent insanity could result from the use of Coryphantha species by people who weren’t prepared. While thinking it unlikely, the possibility of prolonged effects or after effects had been considered before hand, due to the warnings, and so, while concerned and in some spots challenged, I was not overly worried. If a person experienced this and was not prepared, or was unstable to begin with, the duration and weirdness of the side-effects might potentially cause them some problems.

Its important to mention that if either macromerine or normacromerine is indeed a hallucinogenic alkaloid, or if normacromerine is, they would be the ONLY N-methylated phenethylamines that are known to be hallucinogenic.

N-methylation normally ameliorates hallucinogenic activity, doing so even on DOM (STP). If *any* activity remains on an N-methylated phenethylamine it is generally that of an amphetamine type stimulant.

As is noted under normacromerine in The Cactus Alkaloids, the conjecture by SULGIN (personal communication) concerning potential interactions of this alkaloid with known MAOI Coryphantha alkaloids needs some study.

Coryphantha palmeri

There is an odd report by DOMÍNGUEZ et al. 1970 that seems to have been left uninvestigated by later workers.

In this paper they mention that Coryphantha palmeri was employed as a “narcotic”. They observed 4 spots during tlc but were unable to get the alkaloid they isolated to crystallize and never identified it. (They did identify other nonalkaloidal components by mp, tlc, IR, UV, MS and NMR.) This is often cited as a report finding no alkaloid in this species. We do not think the issue is settled yet. More work is needed.
Cactus Chemistry By Species

Cylindropuntia acanthocarpa
Ingested for gastrointestinal disturbances. JOHNSON 1999

Cylindropuntia bigelovii (ENGELMANN) KNUTH
Used as a diuretic. JOHNSON 1999 / Diuretic - DUKE

Cylindropuntia leptocaulis
Mexico: “tasajillo”, “tassajilla”, “garumbulo”
CASTETTER & OPLER 1936 reported a claim purporting psychoactivity from fruit consumption but I am unable to find anyone who can reproduce these results in their bioassays. They were said to have such “pronounced narcotic effects that the Indians will not walk close to plants which bear them, and claim that eating a single fruit will make one “drunk and dizzy.” ” [Never mind that the fruit have tiny glochids.]

I would suspect that this might have arisen out of a Mescalero’s sense of humor. I can almost hear the words “Hey cowboy...”

They are commonly included on the lists of the cactus species fruit eaten as food by the indigenous southwestern peoples.

Cylindropuntia versicolor
Chemical studies performed on Aspergillus terreus yielded interesting products. (It was inhabiting the rhizosphere of Opuntia versicolor.)

Among them was (+)-Terrecyclic acid A which was found to be “capable of disrupting the cell cycle through an apparent arrest to progression at the G(1) and G(2)/M phases in this p53 competent cell line. “

WUERATNE et al. 2003

Terrecyclic acid A (TCA) isolated from this fungus was also determined to be active as a small-molecule inducer of the heat shock response and showed anticancer activity. It was suggested that it affects pathways involved with oxidative and inflammatory cellular stress responses.

TURBYVILLE et al. 2005

Cylindropuntia whipplei
Used to treat diarrhea. JOHNSON 1999

Dolichotele uberiformis
The juice from this cactus injected into a frog rapidly caused its death. (from SOULARIE 1947) This refers to a brief comment made in LEWIN 1894.

Echinocereus enneacanthus
Employed in Dropsy; Used as Piscicide & Vermifuge.
DUKE cited KROCHMAL & KROCHMAL 1973

Called the “strawberry cactus” due to its fruit. STANDELEY 1924

Echinocereus stramineus
“pitahaya”
Prized for its edible fruit, STANDELEY 1924

Echinocereus coccineus
Echinocereus salm-dyckianus
Echinocereus triglochidiatus

BENNET & ZINGG 1935 do not mention any drug use of any Echinocereus despite making comment on their commonness.

Tarahumara name: “hikuri”; “wichuri”
Mexican name: “pitallita”

Bye reported that Echinocereus triglochidiatus ENGELM. and E. salm-dyckianus SCHEER “are “hikuri” of the sierras and can be used in the same manner as the preceding types although they are not as powerful.”

BYE 1979

“High mental qualities are ascribed especially to all species of Mammillaria and Echinocactus, small cacti, for which a regular cult is instituted. The Tarahumares designate several varieties as hikuri, though the name belongs properly only to the kind most commonly used by them. These plants live for months after they have been rooted up, and the eating of them causes a state of ecstasy. They are therefore considered demi-gods, who have to be treated with great reverence, and to whom sacrifices have to be offered.”

LUMHOLTZ (1902: 303) uses the name Echinocactus but his accompanying illustration is very clearly that of an Echinocereus.

It seems certain that what Bye referred to as Echinocereus triglochidiatus was Echinocereus coccineus. Confusion between the two species is quite common but Echinocereus triglochidiatus has a more northerly distribution.

I am only aware of one person bioassaying this plant. He told me he experienced something vague and weird but was unable to obtain any interesting results despite subsequently isolating pure alkaloids and ingesting them alone and combined with an MAOI.

Arizona hedgehog cactus (Echinocereus triglochidiatus var. arizonicus) was purported by CROSSWHITE 1992 as being under threat of illegal poaching for its purported DMT content. One has to wonder how much incidence of this actually existed before this report and how much, if any, has occurred after it.

Speculations by Crosswhite that its “[...] evolutionary history may be linked to trading by the prehistoric Salado culture, implying that the species may actually be an early cultivar “ does not seem to be based on anything that is real. See USFWS 2001.

The Isleta in New Mexico ate the pulp of Echinocereus triglochidiatus after baking it or making it into a candy with sugar. Echinocereus fendleri and Echinocereus gonacanthus were roasted and used as food by the Cochiti.

Several species are valued as food but more are highly regarded for their fruit.

CASTETTER 1935: 26
Echinocereus chrysocentrus (golden spined strawberry)
Echinocereus cocineus (hedgehog cactus)
Echinocereus fendleri (desert strawberry)
Echinocereus leeanus (salmon-flowered hedgehog)
Echinocereus rigidissimus (rainbow cactus)

were all valued for their fruit by the Mescalero.

CASTETTER & OPLER 1936: 41

Echinopsis multiplex

An aqueous decoction of Echinopsis multiplex showed in vivo tumor growth inhibition activity and increased the survival time of rats with solid tumor S180 and Lewis pulmonary carcinoma. (p.o. 30 g/kg and 60 g/kg).

In vitro study of their plasma showed that it inhibited DNA synthesis in YAC-1 tumor cells and significantly suppressed the proliferation of EAC tumor cells (anti-neoplastic effect). CHEN et al. 1999

Echinocereus mammilosus RÜMPLER

SOULAIRE 1947 says it has a “narcotic” action and, in animals, a lethal dose causes death by respiratory depression.

RIMINGTON et al. 1918 appears to have *somehow* confused this with Pachycereus pecten-aborigineum when saying:

“From Cereus Caespitosus Engl. and A. Gray, Heyl separated an alkaloid, pectine, which, according to Heffter (A. Pharm., 1901, cxxxix, s. 462), produced both in cold and warm blooded animals tetanic convulsions with heightened reflexes. According to the experiments of Magilewa, the alkaloid acts upon the isolated frog’s heart as a depressant.”

GRIEVE 1931 appears to draw from this source when writing:

“Cereus caespitosus. An alkaloid separated from this variety, called Pectenine, produces tetanus convulsions in animals.”

Cereus caespitosus became Echinocereus reichenbachii. The comments by Heffter appear within the pages of HEYL 1901 but this paper does not discuss Cereus caespitosus.

All of the varieties of bona fide Echinocereus reichenbachii appear to lack any analysis?

Epiphyllum oxypetalum

A comment appeared in the Entheogen Review that a large doses of a water extract cause “hallucinations” (DE KORNE 1997).

In checking the purported reference (HUSON 2001) AARDVARK 2006 discovered not only was the claim taken from GRIEVE 1931 but it actually referred to Selenicereus grandiflorus rather than to Epiphyllum oxypetalum!

Epiphyllum oxypetalum apparently has some type of pharmacological/physiological actions.

All in isolated tissue preparations:

“decreased the flow rate of perfusion fluid in isolated guinea-pig lungs.”
“shortened the guinea-pig tracheal chain.”
“increased the spontaneous activity of the rat and mouse jejenum and elicited contraction of the guinea-pig ileum”

The responses of the tracheal chain and the ileum were similar to the responses produced by acetylcholine or by histamine. Chow found this could be blocked or reversed by atropine and by chlorpromazine.

“caused a shortening of the rat aortic strip which was antagonized by phentolamine.”
“exhibited both inotropic and chronotropic effects on isolated rat auricles and hearts, which could be blocked by propranolol.”
“produced slow contraction of the nictating membrane in anesthetized cats. This response was readily abolished by phentolamine.”

CHOW et al. 1977 (Above was from the English abstract.) Duke’s database lists Epiphyllum oxypetalum being used for “Longevity” citing BURKILL 1966.

I have not yet obtained that paper.

Epiphyllum phyllanthus

Duke’s database lists this species being used as “cardiac” & “tonic” citing DUKE 1972

Serves as a bandage for burns & wounds. SOULAIRE 1947

Tested in animals for possible antidepressant effects. Choice based on “being traditionally used for the treatment of bad dreams; witchcraft, or madness”, according to a Guaymí Indian informant. AARDVARK 2006 cited ANDERSON 2004a

Epiphyllum spp.

Culina: “Wamapanako” (RIEVER & LINDGREN 1977)

Sharanahua: “Pukara” (PINKLEY 1969)

“Pokere” (RIEVER & LINDGREN 1977)

An unspecified Epiphyllum species is said to be used by the Peruvian Sharanahua as an ayahuasca admixture. (appearing in RIEVER & LINDGREN’S 1972 listing)

Only one leaf of the Epiphyllum species is added to ayahuasca or else its unboiled juice is consumed along with the prepared hoasca.

Homer Pinkley 1969 commented that there is an herbarium voucher of the Epiphyllum (made by L. Rivier & I. Rüff) present in the Economic Herbarium of Oakes Ames at Harvard.

An unspecified Epiphyllum species is said to be used as an appetite stimulant in Costa Rica.

AARDVARK 2006 cited ANDERSON 2004b.
WORLDS WONDER REMEDY
Report of the Council on Pharmacy and Chemistry

Worlds Wonder Remedy is said to be prepared by macerating "the leaves of certain cactus plants, among them being the "Alligator Tail cactus," the "Philo" cactus and several other species of cactus in brandy. No evidence is submitted in regard to the possible properties of the "Alligator Tail," the "Philo" cactus or the identities and properties of the "other species." Neither are the quantities of the leaves in a given amount of the wonder remedy declared. It is claimed "We have also found this medicine to be a very good cure for nervousness, headache and all pains of the body, especially stomach trouble, indigestion, cancer of the stomach and we have also given it to people sick at this time of the year and they did not know what ailed them but it made them feel fine."

The Council has no evidence that this preparation has therapeutic virtues, and in the absence of such proof declared the claims unwarranted and preposterous.

AMERICAN MEDICAL ASSOCIATION 1918

Maybe "Philo cactus" intended Phyllocactus but I do not have a guess for "Alligator tail cactus." Aloe vera, several other Aloe species, and a rampant Kalanchoe amazingly all are known by the common name ‘Alligator cactus’.

Epithelantha micromeris

Asserted hallucinogenic based on some intriguing statements but this may be a cross-cultural conceptual force-fitting?

"Mulato" (Tarahumara)
"This is believed to make the eyes large and clear to see sorcerers, to prolong life and to give speed to the runners."

LUMBOLTZ 1902

THIORD-GRAY 1955 purported this to be the Tarahumara’s "peyote mulato": "...credited with great intellectual and moral qualities. A small dose of this plant will open the busi-ra (eyes). One can then clearly see the evil wizards and witches. It will prolong life and increase the speed of a runner in a race."

Mentioned by PENNINGTON 1963: 166 as a "narcotic" cactus with use similar to Lophophora. Said to not be available at that time in Tarahumara country. "Specimens of Epithelantha micromeris in possession of Indians near Guaguachic and Nararachic are claimed to have been brought from slopes of ranges northeast of Valle de Allende, beyond the Rio Florida."

"The whole plant, as well as the fruit (although it is considered less effective), is used to stimulate and protect runners (Lumholtz 1902- Pennington, 1963). "... use appears to be restricted to the upper regions of the Rio Concho."

BVE 1979

The phrase “much less effective” is interesting. This author has eaten the fruit of this cactus many times and never experienced stimulation, or any other effect, even faintly. They taste mildly sweet and similar to Opuntia flower petals Standley noted that they are considered edible in México and called chilotes. STANLEY 1924: 933

WEST & McLAUGHLIN 1977 demonstrated the (rather consistent) toxicity of the saponin extract when injected into mice. Toxicity ranged from death within 24 hours at 100 mg/kg to death within 1 hour at 1 gram per kg.]

"Rosapara"

Described as a “more advanced vegetative stage of the preceding species—though it looks quite different, being white and spiny. This, too, must only be touched with very clean hands, in the moral sense.”

Lumholtz comments that the only people who are allowed to handle it are those “well baptised” and that “It is a good Christian and keeps a sharp eye on the people around it; and when it sees anyone doing some wrong, it gets very angry, and either drives the offender mad or throws him down precipices. It is therefore very effective in frightening off bad people, especially robbers and Apaches.”

LUMHOLTZ 1902

Ferocactus covillei

= Ferocactus emoryi

Used for treating sores. DUKE.

Ferocactus sp

Used for headaches, chest and women’s complaints. DUKE

Haageocereus (Weberbauerocereus) acranthus

This species appears to lack published analysis. It was asserted to contain mescaline in CAYCHO JIMENEZ who made this claim without including a reference. This first image was sent to me to illustrate material that was purportedly being used by shamans in Peru. [See illustrated PDF for images]

Haageocereus (Weberbauerocereus) cephalomacrostibas

AKA Trichocereus cephalomacrostibas

This species also lacks any published analysis. Asserted to contain mescaline in CAYCHO JIMENEZ who made this claim without including a reference.

Harrisia divaricata (LAMARK) LOURTEIG

Antihelmintic (no reference included)

REMINGTON et al. 1918

Harrisia nashii BRITTON (now H. gracilis)

Vermifuge (Haiti) - ŠTARHA 2001

Hylocereus undatus

Caustic stem juice employed internally and externally for a vermicide. The internal use is said to be dangerous. Widely cultivated for its fruit.

STANLEY 1924: 913
Lemaireocereus hystrix

[Name accepted as Stenocereus fimбриatus -- commonly encountered as synonym Stenocereus hystrix]

Duke cites Hartwell for “Cereus fimбриatus” being used for warts.

This species appears in the analytical literature only under the more commonly encountered Stenocereus synonym.

Lemaireocereus hystrix from Jamaica was analyzed by Carl Djerassi in the 1950s and was reported to be devoid of alkaloid.

It was found to contain an uncharacterized triterpenic lactone that he termed the hystrix lactone. This lactone also showed up in several other species of Lemaireocereus.

More recently one ethnobotanical supplier has been claiming this plant to at least sometimes be potent with mescaline.

The material being sold under this name as live cuttings and dried outer flesh first appeared labeled Trichocereus cacocoeensis. It then was renamed as a peruvianus variety and then a peruvianus hybrid before settling on Stenocereus hystrix.

When asked the owner about the name and identification he said the name was assigned by a botanist who examined the vegetative material.

The first cutting I obtained did resemble the material growing in the greenhouse at the Huntington. (The Huntington material was collected from Puerto Rico).

He also commented that only material growing in one stand on the Dominican Republic was active and not the others growing elsewhere on the island. How this was determined, how it was first determined to be active and why it was suspected of being a hybrid (and with what), were not known to him.

The claim is that this material is mescaline containing and found to be active in human bioassay at 20 grams of dried material but it was commented on by the vendor that too much rain had reduced the potency in at least one harvest so he changed the estimated dosage range to 20-40 grams.

I have been unable to locate anyone bioassaying anything except for pre-prepared dried commercial flesh.

It needs an analysis starting with a living cactus. My two attempts to obtain live material proved problematic.

Lemaireocereus laetus

[Name accepted as Armatocereus laetus]

Over 20 years ago, Wade Davis purported that cactus was used as a San Pedro substitute by a shaman near Huancabamba. It was purportedly called fishicol by Davis’ informant although our contact said it was locally called San Pedro.

Human bioassays of cultivated material have thus far been without results although I am only aware of two attempts neither of which included the amount used or the form of preparation.

In his 1983 paper on “Plants of the San Pedro Cult” Davis claimed that herbarium vouchers had been prepared and that an analysis was ongoing but did not mention the results in either Davis 1997 or 1999. Correspondence with Davis & D.M. McKenna established that an analysis was never performed.

Lemaireocereus matucanense

[Name accepted as Armatocereus matucanense]

This is listed as a good species in Hunt 2006, yet Hunt also comments: “doubtfully distinct from Armatocereus laetus”

This cactus is purported to be employed as a type of San Pedro in parts of Peru. (Information from Grizzly; personal communication) It is claimed to be “strong”.

Independent confirmation of that activity has not been performed. As was also the case with Davis, Grizzly and friends did not bioassay the plant so the claim remains anecdotal.

That particular population needs analysis.

Leuchtenbergia principis

Purported to be used for treating wounds in “beasts of burden”. Standley 1924: 934

It may be unrelated but in a massive rat invasion of my cactus nursery many years ago this was one of a very few species left completely untouched even as seedlings.

Lemaireocereus thurberii

Fruit used by the Tarahumara for producing tesgüino. Pennington 1963

Fruit colors the urine like blood. Standley 1924: 901

Lemaireocereus queretaroensis

Called “pitahaya” due to edible fruit. Standley 1924

Used in Mexico as a purgative. Soulaire 1947

Lophocereus schottii

Féger & Moser 1991 mention that the senita is one of the three plants that the Seri believe was once a human.

Traditionally used for cancer. Duke (Hartwell)

Antimicrobial & other biological activities studied in: Fimbres & García 1998

Morales 2006

Rico-Bobadilla et al. 2001

Lack of the appropriate enzyme for converting cholesterol into 7-dehydrocholesterol (termed the “Neverland” gene) makes this plant an obligate food source for Drosophila pachea. Without consumption of Lathosterol it would be unable to successfully mature. Lang et al. 2012

Lophophora fricii

Cultivated Lophophora fricii were reported nonhallucinogenic at 3 gm/kg in Habermann 1978a.

Lophophora jordaaniana

Cultivated Lophophora jordaaniana were bioassayed successfully (for mescaline) at 3gm/kg in Habermann 1978a.

Lewin 1894 commented that “Hildman” isolated an alkaloid in 1889 and showed that it caused convulsions in frogs. This was apparently personal communication with Lewin rather than published work.
Lophophora williamsii

“The dried plants have been in use among the native people [in Mexico] since pre-columbian times, and are still employed, although their use is forbidden by law.”

“[…] the general effects are somewhat like those resulting from the use of hashish.”

Standley 1924

“…used by Rio Grande Indians to produce intoxication -- similar to cannabis, during religious ceremonies;”

“Heart and respiratory stimulant, tonic, adjuvant to digitalis, narcotic, slightly slows pulse, produced mental and physical weariness, sleep without untoward symptoms; excessive quantities produce spasms resembling strychnine poisoning; pneumothorax, tuberculosis, angina pectoris, asthmatic dyspnea, hysteria.”

Culbrett 1927

The equating of peyote’s activity with that of either opium or hashish is common in the early literature.

Green plants are “chewed and placed upon bruises, bites and wounds” (Pennington 1963)

“anodyne, antirheumatic, bitter, cardiac, cardiotonic, emetic, entheogen, febrifuge, intoxicant, lactagogue, narcotic, panacea”

Johnson 1999 ref#6

“arthritis, backache, common cold, corns, diabetes, fever, gastrointestinal disturbances, headache, infection, influenza, orthopedic ailments, sunstroke, tuberculosis, venereal ailments, wounds”

Johnson 1999 ref#7

“…many uses in folkloric medicine including the treatment of arthritis, consumption, influenza, intestinal disorders, diabetes, snake and scorpion bites and datura poisoning.”

“The Huichol rub the juices of fresh peyote into wounds to prevent infection and to promote healing.”

“It is used to gain knowledge, prophesize the future, and for almost every type of illness. It is also externally applied to painful joints.”

Johnson 1999

Extract is used externally for bruises, fractures, rheumatism, swellings and joint pain in the form of liniment, ointments and cresses. Used orally or topically as an analgesic.

Commercially produced and marketed on-line there is also a cottage industry that exists producing pomada de peyote.

In the region of the headwaters of the Río Concho, Pennington 1963:159 noted that the expressed juice from Lophophora williamsii was sometimes added to tejúno to “make the corn beer more enjoyable.”

Havard had made a very similar claim.

The plant has many folk medicinal applications. See Sacred Cacti or Anderson or McLaughlin for a listing of additional uses.
The Genus Mammillaria

The milky sap of some species were used to remove warts.

Standley 1924: 975

Duke/Martínez mentions use for earaches, dysentery, insecticidal, poison (not indicated whether as poison or for treating poisoning), pulicidal, purgative, snake repellant.

Mammillaria grahamii (sunset cactus)
Mammillaria grahamii var. olivae (snowball pincushion)
Mammillaria mainae (horned toad cactus)
all have fruit that were valued by the Mescalero.

Castetter & Opler 1936: 41

Mammillaria arrietina Lemaire

Lewin 1894 commented that this species was found to be nontoxic. [Now considered a synonym of Mammillaria magnimamma var. arrietina (LEM.) SALM-DYCK]

Mammillaria centricirrha var. pachythele

Lewin 1894 commented that this species was found to be nontoxic. [Mammillaria centricirrha Lemaire is now considered a form of Mammillaria magnimamma]

Mammillaria craigii

“Tarahumara names: "wichuri"; "witculiki" (Bennett & Zingg 1935), "wichuriki" (Thord-Gray 1955)
Mexican names: "peyote de San Pedro"; "biznaga" (Bennett & Zingg 1935; Thord-Gray 1955)

"In the Barranca de Batopilas, M. craigii is respected by all Tarahumara.
Mistreating it, such as making botanical specimens of it, is considered very 'dangerous and terrifies many natives who may see it being collected by a botanist."

Bye 1979

Field work by Bye established that M. craigii Lindesay and not M. heyderi was the cactus discussed by Bennett & Zingg 1935 & Thord-Grey 1955 under the name "wichu-ri-ki".

This is commonly implied to have hallucinogenic activity or even to have fruit which is hallucinogenic but careful reading is suggested as the comments from Bennett & Zingg clearly said “The small, red fruit is sweet and casually eaten.” And what was said by Thord-Grey 1955: “It has a small red fruit which is eaten. This plant is greatly feared, as it is supposed to have magical powers. [...] The shaman also uses this plant as a very important medicine to clear his vision so that he can see sorcerers and prolong life. The medicine will also make the foot light and increase the speed of a runner in a race.”

Thord-Gray also commented “…It matters not how well the suku-ru-ame [witch] is hidden, the shaman can see him clearly.”

“The heart of the cactus is used to cure or relieve headaches. After the spines are removed, the plant is cut up into two or more pieces, roasted for a few minutes and then part of the stuff is pushed into the ear.”

Thord-Grey 1955: 483

After similarly discussing its application for a headache remedy Bye goes on to comment “The upper portion of the plant is said to be the most effective. The top, with the spines removed, is ingested and is said to put one to sleep soon. During this sleep, the person "travels" to distant places and sees brilliant colors. If the person is not prepared, it will drive him crazy. Its effects are said to be similar to “hikuli”.”

It is unclear where this comment came from. I’m assuming from Bye’s informants rather than a confusion with his account for M. grahamii var. olivae.

Mammillaria craigii currently lacks any published analysis.
It has however been reported to be used in Oz as recreational drug. The dose is said to be a single specimen 4 inches or so in diameter. The spines are first removed and the entire body of the plant eaten. Fortunately there are a large number of large seed grown specimens available.

Friends with first-hand experience describe it as being MDMA-like. Whether this is realistic or if it just an expression of the “tastes-like-chicken” phenomenon, where people describe something new by comparison to the closest thing in their experience, I do not know.

It is said by different bioassayists to be only mildly or not particularly hallucinogenic but with a euphoric component and pleasant stimulation causing it to become popular in at least some small subsets of the many Australian dance circles.

Clearly more work is needed.

Mammillaria gaminispina

Employed for excrescence. Duke (Hartwell)

Mammillaria grahamii var. olivae

“Tarahumara name: "hikuri"
Mexican name; "peyote"

“Small clusters of this cactus (Fig. 3) are found on the slopes of Barranca de Batopilas and are reported to be the actual "hikuri" of this region. It is said to be distinguished from similar species of Mammillaria by the reddish central spines and the reddish vascular tissue in the plant stem. The fruit and top of the plant with the spines removed are eaten and are said to cause drowsiness followed by "travel" with brilliant colors. It is taken by the shaman and participants during special ceremonies. If improperly used, the plant can cause a person to go crazy. Specimens of this Tarahumara "peyote" are awaiting analysis.”

Bye 1979

I have been unable to locate the results of that analysis or determine if it occurred.

Somehow M. grahamii found itself added to the list.

Castetter & Opler 1936 mention Mammillaria grahamii and var. olivae as having fruit which are eaten as food.
Mammillaria heyderi

In 1935 Bennett & Zingg reported on the use of Mammillaria heyderi by the Tarahumara.

Thord-Gray & Robert A. Bye Jr. later published comments that among its many magical powers the plant was used for locating wizard and increasing speed in runners. It was also said to be used for inducing sleep during which time shamans would travel to distant places and see brightly colored things. "...greatly feared for its magical powers. This medicine will clear his vision. It matters not how well the suka-ra-ane [witch] is hidden, the shaman can see him clearly."

Thord-Gray 1955

These assertions were apparently considered by later workers to be conclusive proof of hallucinogenic use. Perhaps noteworthy is the fact that no Western workers ever bioassayed the plant.

In 1973 Jan Bruhn commented on the results of an analysis reporting the presence of N-Methyl-DMPEA while repeating the claim of those earlier workers.

Interestingly, as a result of that paper (Bruhn & Bruhn 1973) a person can find this substance listed as a hallucinogen in a number of academic and on-line resources based entirely on that single report of its occurrence in this species. It is even common to find this plant discussed as a hallucinogen and that activity attributed to this alkaloid despite there being no report of a bio assay and the pure compound apparently never having seen any pharmacological evaluation.

Most pertinent, but incredibly having no impact on the persistence of the above accounts, in Bye’s 1979 report on the hallucinogenic plants used by the Tarahumara it was determined that the species employed by the Tarahumara was not Mammillaria heyderi but Mammillaria craigii.

Pennington 1963:118 mentions Mammillaria heyderi only in regards to its fruit being used as food.

Duke lists uses for earache, headache, deafness and longevity. He also reiterates the erroneous claim it is used as a hallucinogen.

Mammillaria magnimamma

Lactogogue. Duke

Mammillaria microcarpa

Earache. Duke (Unclear if this is in reference to its synonymity with Mammillaria grahamii or if this was as independent claim.)

Mammillaria polythele Martius

Lewin 1894 commented that this species had been found to be nontoxic.

Mammillaria pulchra Haworth

Lewin 1894 commented that this species was found to be nontoxic. M. pulchra is not currently recognized.

Matucana madisoniorum (Hutchison) Rowley

Matucana madisoniorum is rumored variously to be used in Peruvian native medicine and to contain mescaline.

It presently appears that rumors of this species as either 1) a hallucinogen or 2) a mescaline container are erroneous.

Until fairly recently this species was rare in cultivation. When it was discovered it was a rare cacti in the wild suggesting that any medicinal usage would have to be very localized. Furthermore when Hutchison returned to the original type locality he was unable to locate any plants remaining. Their absence was suspected to be the result of an abundance of local goats. Other occurrences have been found.

It is unclear why Paul Hutchison thought it contained mescaline or why he believed it to have ethnomedicinal applications or if these are mistaken conclusions reached by others.

It would also be valuable to track down any actual field reports of use and determine what application they actually had. Cacti are used for MANY purposes by native cultures; hallucinogenesis is only one. An anti-infective topical agent seems every bit as likely.

Additionally analysis of it has produced no evidence of evidence of mescaline or of any other alkaloid (unpublished GC-MS by Shulgin; personal communication) Shulgin’s analysis was performed on a specimen provided to him by one of Hutchison’s former students and was a clone from a plant from the original type collection. I saw the specimens that were extracted (and helped him mince the fresh plants with heavy scissors) so can say with certainty that they were very typical looking, nearly bald with a few weak spines. Sasha kept live plants for voucher material.

Rumors of that particular material being a mescaline container are clearly erroneous.

Regardless, this entire genus deserves a detailed analysis.

Melocactus bellavistensis

Melocactus bellavistensis has been purported to have hallucinogenic use in Catamayo Valley in Ecuador. KVIST & MORAES R. 2006.

There are many problems with the claims around this plant. Most notably the apparent unavailability of its primary reference: VIVANCO 2000. It probably merits an analysis but needs some published primary work that is not made of unobtainium.

Claims about this plant presently should be regarded with some reservation. There were some additional comments on it made by Peter Gorman (who refers to it as the “moon cactus”) that really do not deserve even this much of a mention. (In High Times and on his webpage.)

Melocactus depressus Hooker

An arabinogalactan from this species was reported to show activity at stimulating phagocytosis. Da Silva & Parente 2002
Myrtillocactus geometrizans

“garambullo”

Pulp is used in Mexico as a diuretic & antipyretic.
Soulaire 1947.

Peniocerol, Macdougallin and Chichipegenin from an extract of plant and roots were all reported to have insecticidal and insect growth regulation activity.
Cespedes et al. 2005

Sometimes called the berry cactus or the billberry cactus.
Fruit is popular and sold fresh or dried in local Mexican markets.
Fruit are referred to as garambullos or billberries.

Melocactus peruvianus VaupeL

Caycho Jimenez 1977 (page 91) asserted that it contains mescaline but did not offer any supportive reference.
An analysis may be indicated but the origin for the claim seems questionable.

Neoraimondia macrostibas

Said to be incorporated into the drink known as cimora.
Cruz Sanchez 1948 (as Cereus macrostibas)
This is presented as being in combination with other cacti and plants.
See a more detailed discussion in Ott 1993 & in Sacred Cacti Part B. San Pedro pages 110-112.;
To locate a pdf of the San Pedro book:
http://www.largelyaccurateinformationmedia.com/LAIM/SP.html

Nopalea cochenillifera (L.) SalM-DyCk

Joints used as poultice for articular rheumatism, erysipelas, ophthalmia, earache and toothache.
Standley 1924
Pink or red floral tissues used as refreshing tea.
Soulaire 1947
An important host plant for cochinelline insects (hence its name).

Obregonia denegrii

Duke lists as used for Antibiotic, Poison (unclear if used as a poison or as a remedy for poisoning), Sympathomimetic.

Opuntia basilaris

Used as an analgesic.
Employed to treat skin ailments and warts.
Johnson 1999
Warts - Hartwell

Opuntia bigelovii see as Cylindropuntia bigelovii
Opuntia dillenii see as Opuntia stricta var. dilleni

Opuntia echinocarpa

An ethyl acetate extract derived from a strain of Fusarium oxysporum (mitosporic Hypocreales; an endophytic fungi inhabiting the stem tissue of Opuntia echinocarpa AKA “silver cholla”) were reported, using bioassays, to possess activity for the inhibition of metastasis [Using the wound-healing assay (WHA)] and proliferation/survival [MTT assay].
Bashyal et al. 2007

Opuntia elatior

Antiseptic, Biliousness, Boils, Coughs, Expectorant, Guinea-worms, Inflammation, Ophthalmia, Pertussis, Sores & Spasms.
Duke

Opuntia engelmannii

“Cactus apple”

“Arizona cactus pear extracts effectively inhibited cell growth in several different immortalized and cancer cell cultures, suppressed tumor growth in nude mice, and modulated expression of tumor-related genes. These effects were comparable with those caused by a synthetic retinoid currently used in chemoprevention trials.” Zou et al. 2005
The owner of the company making this product told me that it is obtained from Opuntia engelmannii.
Used to treat “women’s ailments”. Johnson 1999

Opuntia ficus-indica

Used as a diuretic and for treating diarrhea.
Flowers employed for dysentery.
Soulaire 1947
Poultice used for “various painful conditions”, ulcers, sores & boils. El-Moghazy et al. 1982
Used as an emollient.
Used to treat calluses, corns, leprous, measles, tumors.
Also for kidneys.
Johnson 1999
Duke lists uses as: Burn (Radiation), Callus, Corns, Decongestant, Diabetes, Diarrhea, Diuretic, Emollient, In-
ternulcer (?!), Kidney, Leprosy, Measles, Piles, Scald, Sore, Sunburn, Tumor & Wounds.

Anti-hyperglycemic effects were only evident in temporarily hyperglycemic mice.
ALARCON-AGUILAR et al. 2003

The betalain distribution and antioxidant activity for three Sicilian cultivars of \textit{Opuntia ficus-indica} was studied by Butera. The antioxidant activities of methanolic extracts from the edible pulp of the three cultivars were investigated as was the amount of reducing capacity for purified betanin and indicaxanthin. The yellow cultivar exhibited the highest amount of betalains, followed by the red and white ones. The methanolic fruit extracts showed a marked antioxidant activity (measured as 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) equivalents per gram of pulp), dose-dependently inhibited the organic hydroperoxide-stimulated red cell membrane lipid oxidation, and inhibited metal-dependent and metal-independent low-density lipoprotein oxidation. The extract from the white fruit showed the highest protection in all models of lipid oxidation. Purified betanin and indicaxanthin were both reported to be more effective at scavenging the [2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)] diammonium salt cation radical than Trolox.
BUTERA et al. 2002

The 8 flavonoids isolated from the ethyl acetate fractions of an extract of the fruits and stems of \textit{Opuntia ficus-indica} var. \textit{saboten} had antioxidant activity and neuroprotective effects studied. All found to be active at inhibiting lipid peroxidation and free radical scavenging. Quercetin and its 3-methyl ether were found to inhibit XO activity (in vitro).
QUERCETIN was more active than (+)-dihydroquercetin. (Quercetin 3-methyl ether = most active.)
LEE et al. 2003

\textbf{Opuntia fragilis}

Used for skin ailments & throat ailments. JOHNSON 1999

\textbf{Opuntia fulgida}

DUKE lists for: Toothache, Diarrhea & Short-windedness.

\textbf{Opuntia humifusa (= Opuntia compressa)}

Used to treat skin ailments. JOHNSON 1999
Extract of the pads was shown to possess potent antioxidant, radical scavenging and anti-inflammatory activity. One of the active radical scavengers was determined to be quercetin.
CHO et al. 2006
LOD BROTHERS (1903, 1908) says \textit{Opuntia rafinesquei} (now \textit{Opuntia humifusa}) has been “inexcusably substituted” for \textit{Selenicereus grandiflorus}.

\textbf{Opuntia imbricata}

Decoction of fruit used to set cochineal dye. STANLEY 1924

\textbf{Opuntia lindheimeri}

Used for bruises (veterinary), dyspepsia, mumps, swelling. JOHNSON 1999, DUKE

\textbf{Opuntia megacanthus}

Showed activity at reducing plasma glucose but it was suggested to demonstrate possible kidney toxicity (in rodents). BWTI et al. 2000
Employed as a laxative. JOHNSON 1999
Used for inflammation, pregnancy. JOHNSON 1999
Pads used as a poultice. DUKE

STANLEY 1924: the “best edible tunas” come from this species.

\textbf{Opuntia megarhiza}

Employed for treating fractures & inflammation. JOHNSON 1999
Palmer reported the fleshy roots to be used as poultices for fractures and inflammation. STANLEY 1924

\textbf{Opuntia moniliformis (L.) STEUDEL}

Used to treat tumors. JOHNSON 1999 (from HARTWELL)

\textbf{Opuntia phaeacantha ENGELMANN}

“Tulip prickly pear”
Use in “women’s ailments”. JOHNSON 1999

\textbf{Opuntia plumbea ROSE}

Used for skin ailments & “women’s ailments”. JOHNSON 1999

\textbf{Opuntia polyacantha HAWORTH}

Used in folk medicine for backache, diarrhea, moles, warts, & wounds JOHNSON 1999 (HART was source for the first two.)
The word “poison” is listed in JOHNSON 1999 but it is not clear if that means being used as a poison or for treating poisoning.

\textbf{Opuntia pseudo-tuna SALM-DYCK}

Used for treating tumors. JOHNSON 1999 (from HARTWELL)

\textbf{Opuntia rafinesquei ENGELMANN}

See under \textit{Opuntia humifusa}.

\textbf{Opuntia reflexispina WIGGERS & ROLLINSON}

See as Corynopuntia reflexispina

\textbf{Opuntia reticulata}

A semimonstrose plant known as \textit{Opuntia zebrina}, \textit{Opuntia zebrina} forma \textit{reticulata} and \textit{Opuntia dillenii} forma \textit{reticulata}
Purgative & antihelminthic.
Root has dental application.
SOULABRE 1947
Opuntia spp.

Young joints are applied as poultices to reduce inflammation. Standley 1924

Duke lists as being used for:

Opuntia streptacantha

An extracted fraction believed to be proteinaceous in nature was found to inhibit replication of a number of DNA and RNA viruses in vitro and in vivo. Ahmad et al. 1996

Administration of a stem extract to mice, horses, and humans was reported to inhibit replication of a number of RNA- and DNA-viruses including Equine herpes virus, Herpes simplex virus Type 2, HIV-1, influenza virus, pseudorabies virus, and respiratory syncytial disease virus. The active component was not identified but was suspected to be proteinaceous.

Ahmad et al. 1996

A “highly stable trypsin-like proteinase inhibitor” was isolated from seeds and characterized. Torres-Castillo et al. 2009

No anti-hyperglycemic effects observed, except in alloxan-diabetic mice. Alarcon-Aguilar et al. 2003

Opuntia stricta var. dillenii

Most often analyzed as Opuntia dillenii

Used to treat pimples. Johnson 1999

Guinea-worms, Ophthalmia, Pimples, Sores, Syphilis. Duke

“Actions: Promotes the flow of ch’i, invigorates blood circulation, clears up heat, removes toxin.”

Chest & abdominal pain due to nervousness, dysentery, hemorrhoids, cough, sore throat, lung abscess, mastitis, snakebite. 30-60 grams fresh stem is given as a dose Hsu et al. 1986

Employed in Chinese folk medicine for diabetes, gastric ulcer & inflammatory conditions.

An aqueous ethanolic extract of stems showed significant radical scavenging activity.

Qu et al. 2002

Loro et al. 1999 reported that the aqueous extract of Opuntia dillenii fruit exhibited central analgesic properties associated with an anti-inflammatory action.

Analgesic & anti-inflammatory effects were found to be present in the fruit, flowers & stem but were the most pronounced in the alcoholic extract of the fresh flowers.

Ahmed et al. 2005

Methanolic extract of cladodes and also purified Opuntioside-I, an α-pyrone glycoside that had been isolated from the cladodes, showed potent hypotensive activity in vivo. Saleem et al. 2005

Opuntia tuna (L.) Mill.

Used to treat asthma, diarrhea, gonorrhea, rheumatism. Johnson 1999 (from Krochmal & Krochmal 1973)

Stems are boiled and used as poultice for rheumatism. Johnson 1999

Fruit for asthma, diarrhea, gonorrhea. Johnson 1999

Pachycereus marginatus

“hair black”, “inflammation” Martinez 1969

Pachycereus pecten-aboriginum

Mexican: “cardon”, “hecho”

One Tarahumara name, wichowaka, appears to be derived from wichuwa-ka; a term meaning “crazy” or “demented”.

The plant is said to be used by crushing young branches to yield a juice which is added to 3 times as much water and then consumed. A fermented version is said to be purgative.

Bye described the juice expressed from its stems as being “occasionally used by the Tarahumara of the western barrancas to induce visions, along with quick intoxication during ‘tesguinadas’.”

Bye 1979

Pennington 1963:166-167 mentions this as being one of the “narcotic” cacti used similarly to Lophophora.

“There is some minor utilization of juice from young branches of cave (Pachycereus pecten-aboriginum) in ceremonies held in western canyons. A piece of the branch is crushed in a hollow rock and the expressed juice is added to water, about one part of juice to three parts of water. This mixture is claimed to produce the same effect as drinking a ”mixture of jíkuri and water, and results in dizziness and visions.” Pennington 1963

In spite of long reported accounts of Pachycereus pecten-aboriginum (and others) being used ritually, and chemical evaluations being done, there has apparently been no published pharmacological assessment concerning which, if any, of its contained alkaloids are entheogenically active.

Bruhn & Lindgren 1976 found the main alkaloid to be salsolidine in the wild plants they tested. This physiologically active alkaloid is not a hallucinogenic compound although it is thought to play a role in perceptual disturbances experienced by alcoholics.

This certainly is an area both ripe and long overdue for an evaluation. [Reti 1950 notes that both Carnegie and Pilocereine are known to be fairly toxic in mammals.] Pennington’s ethnological account mentioned that young branches are used, as opposed to young plants or older branches. Gigantine was found to be most prevalent in the growing tips of saguaro branches and was not observed in younger cultivated plants, so perhaps may be some rationale to the selection of this part of adult plants of P. pecten-aboriginum. Alkaloids often vary in levels and actual composition between plant parts and it is not uncommon for active growth to have an entirely different composition in some plants.
The chemical evaluations concerning this particular plant (at least those we have seen) have not taken this into account. Native people who have an intimate familiarity with plants rarely do anything without purpose. Such things are often overlooked or dismissed as trivial or unimportant. They may be, and sometimes are, but one cannot automatically assume they can be disregarded.

Used in Mexican folk medicine:
Gastric ulcers (Citing Bravo 1964)
Cancer remedy (Citing Hartwell 1968)
(Both of which mention rather than being a primary account.)
Heliamine was reported to inhibit the growth of sarcoma 45 in rats by 60-79%, in Chachoyan et al. 1973.
Srombom & Bruhn 1978

Pachycereus pringlei
One of the three cactus that the Seri believe used to be human.
Felger & Moser 1985

EARL Campbell concluded elements in Baja cave art represented the cardon in a supernatural context.
Using a unique combination of Baja cave art, literature searches, intuitive guidance and personal courage Earl eventually harvested a section of cactus, cooked it into a tea in his hotel room, returned to the rock shelter that had been his inspiration, and ingested it. In doing so, Earl uncovered the activity of the cardon. He presented a story of his experience that he believed put him in contact with both the plant and the people who once used it. He described hearing their language, seeing their dress, manners & customs, and watching their lives.

Following his adventure Earl sought out Sasha Shulgin in an attempt to stimulate more research into the plant’s bioactivity.

A nice account of the next part of the story appears at: http://www.mdma.net/alexander-shulgin/professor-x.html

“...So Shulgin dissolved the extract of the cactus into fruit juice, then poured a 4-ounce cup for each person. But his experiment went awry. “At about the two-hour point, my visual experiences became totally swamped by an overwhelming fear of moving,” recalls Shulgin, the 77-year-old chemist who introduced ecstasy to the world. His wife, Ann, had an unremarkable experience Shulgin expected. The results, he said he was OK as long as he didn’t move.”

With her pulse racing, she went inside to check on her children. “She had a chilling contempt, and I thought, What an awful, stupid way...”

Early the next morning, Shulgin assembled his test group, still in pajamas, to assess the effects of the cactus extract. All 12 of them had taken the same compound, but half had become extremely ill, while the other six had the kind of pleasant but unremarkable experience Shulgin expected. The results, he decided, were inconclusive. “

In a series of personal conversation between 2001-2005 Shulgin commented on his observation of N-Methylyescaline in the plant and its possible significance. He mentioned that, despite its established lack of interesting properties, he then suspected that was probably the active compound, enabled to be active orally by due to the presence of one or more MAOIs. Sasha referred to the combination as cactihuasca. He also lamented about the difficulty of finding bioassayists for completing this research. Apparently this was due to a heavy body load for both the plant and pure compound combinations. This is essentially where the matter still stands today, a decade later.

Pachycereus pringlei has been reported to be used for:

<table>
<thead>
<tr>
<th>Aches</th>
<th>Earache</th>
<th>Rabies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood clotting</td>
<td>Evil eye</td>
<td>Sores</td>
</tr>
<tr>
<td>Bruises</td>
<td>Fever</td>
<td>Tumors</td>
</tr>
<tr>
<td>Burns</td>
<td>Headache</td>
<td>Vaginal bleeding</td>
</tr>
<tr>
<td>Digestive problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer: stomach</td>
<td>Kidney problems</td>
<td>Varicose veins</td>
</tr>
<tr>
<td>Cancer: uterus</td>
<td>Pimples</td>
<td>Venereal disease</td>
</tr>
<tr>
<td>Cough</td>
<td>Poor circulation</td>
<td>Wound healing</td>
</tr>
<tr>
<td>Cramps</td>
<td>Poisonous snake bites</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>Rheumatism</td>
<td>Dimayuga 1996</td>
</tr>
<tr>
<td></td>
<td>(also in Johnson 1999)</td>
<td>(except where noted)</td>
</tr>
</tbody>
</table>

Suspected of being the plant that Clavigero 1789 described being used by missionaries for creating a balsam for wounds and bruises by boiling down the juice of its branches. Standley 1924: 895

Pelecyphora aselliformis

“peyote”, “peyotillo”
Used to treat fevers in San Luis Potosi. Standley 1924: 973
DUKE lists also used for anodyne, antibiotic, rheumatism.

Peniocereus greggii (Engelmann) Britton & Rose

“night-blooming cereus”, “reina de noche”, “ho’o’k iwa”, “huevo de venado”
Fruit mixed with deer grease is used as a salve for sores.
CASTETT & UNDERHILL 1935: 65
Used as a plaster for lung inflammation, similarly to P. striatus below. CASTETT & BELL 1937: 42

Peniocereus striatus (Brandegee) Buixatus

as Wilcoxia striata (T. S. Brandegee) Britton & Rose

“cardoncillo”, “dahlia-rooted cereus”, “pitahayita”, “jarramatraca”, “racamatraca” “catusamatraca”
Valued medicinally in Baja California.

“The tubers are sometimes crushed and a cloth saturated with the juice applied to the chest for lung troubles”
Goldman 1916: 356

“A cloth saturated with the juice of the crushed roots is sometimes applied to the chest to relieve inflammation of the lungs.”
Standley 1924: 903
“A cloth saturated with juice of the crushed roots was applied to the chest to relieve inflammation of the lungs.”

CASTETTER & BELL 1937: 42

Pereskia aculeata

Fruits expectorant and antisypilitic. SOULAIRe 1947

Pereskia bleo

Known as expectorant and antisypilitic. Used in the treatment of yellow fever. Its sap is used to clarify water. SOULAIRe 1947

Whole plant is used to treat gastrointestinal problems (Panama) SIM et al. 2010a cited GUPTA et al. 1996.

Cytotoxic effects (apoptosis) on various cancer cell lines. SIM et al. 2010a cited ER et al. 2007, SRI NURESTRI et al. 2008 & TAN et al. 2005. TAN et al. 2005 had demonstrated a cytotoxic activity against the human breast carcinoma T47-D cell line. ER et al. 2007 reported some degree of antiproliferative activity against some cell lines under some conditions but also noted a mutagenic potential in the presence of liver enzymes.

Acute toxicity studies for this & *P. grandifolia* produced no deaths so the LD₅₀ of the methanolic extract was estimated to be in excess of 2.5 grams/kg of body weight. SIM et al. 2010a produced no deaths so the LD₅₀ of the methanolic extract was estimated to be in excess of 2.5 grams/kg of body weight.

Pereskia grandifolia

“Jarum Tajuh Bilah” (Malaysia)

Used in local Malaysian folk medicine for the treatment of cancer & tumors, atopic dermatitis, diabetes, gastric pain, headache, high blood pressure, inflammation, rheumatism, ulcers and “for revitalizing the body”.

The fresh leaves are usually consumed raw or as a decoction. SIM et al. 2010 cited GOH 2002 & RAIMET 2004.

Fruit reportedly used to reduce swellings. SAHU et al. 1974 (citing ANONYMOUS 1969: 309)

Pereskia guamacho

Gum used in lung disorders and catarrh.

Leaves used in enemas or as flavoring in herbal teas.

Fruit is used for fevers in Brazil. SOULAIRe 1947

Rhipsalis conferta

The juice from this cactus caused death by cardiac arrest when injected. (from SOULAIRe 1947)

This refers to comments in LEWIS 1894 concerning experiments on cold blooded animals. (I am unaware of any good outcomes ever being reported after injecting cactus juice.)

Rhipsalis pachyptera PFIEFFER

Fruit is used for fevers in Brazil. SOULAIRe 1947

Cereus Bonplandii J.PARMEN'TIER ex PFEIFFER

This is an old name that is usually considered to be a synonym or a variety of *Selenicereus grandiflorus.* It is claimed to possess the same properties as *S. grandiflorus* but the Lloyd Brothers’ Drug Treatise dismisses this.

“Fitch” was mentioned as regarding this to be an “antipsoric of remarkable power” and purported curing eczema, deposits in urine, dropsy of cardiac and renal origin, neuralgia & insanity. CLARKE also indicates the stem tincture for emaciation, affections of the heart and of the kidneys. CLARKE 2002 (1900)

Selenicereus coniflorus

“...gathered in large quantities in Veracruz and shipped to the United States for use in preparation of medicine.” STANDLEY 1924: 914

The intended application was not mentioned.

Selenicereus grandiflorus

Drug extracted from plant used to treat rheumatism.

STANDLEY 1924: 914

Used for dropsy according to JOHNSON 1999.

“Cardiac stimulant (tonic), diuretic, similar to digitalis, but non-cumulative, counter-irritant; cardiac palpitation and weakness, heart failure from valvular disease, angina pectoris, aortic regurgitation, dropsies, low fevers, Grave’s disease, tobacco toxemia, sexual exhaustion.” CULBRETH 1927

From the LLOYD BROTHERS 1903/1908 “Drug treatise”:

Used in Jamaica & in Mexico for fevers, breathing difficulties, In excess amounts acts as an irritant producing diarrhea, increases size of pulse, calming to stomach, raises blood pressure and body temperature, useful for cases of impotency in young men, as a sexual tonic for women, dyspepsia, Grave’s disease, angina, anti-tobacco smoking aid, aortic hypertrophy, nerve sedative, relieves symptoms of menopause, emmenagogue, neuritis, nerve tonic & restorative.

More widely renown as a cardiotonic. More words on that follow.

A thoughtfully concerned comment cautioning that *Selenicereus grandiflorus* contained cardiac glycosides appeared at the Cactus etc chat group.

An on-line search reveals no shortage of claims asserting the presence as well as claims of the absence of radioactive
glycosides in Selenicereus grandiflorus but none find it necessary to include a reference to an actual evaluation.

Vogel et al. 2005 asserts it to be “Digitalis-like” in either its effects or application (said table did not differentiate them) and warned: “Increases effects of hypoglycemics; may enhance effects of cardiac glycosides, angiotensin-converting enzyme inhibitors, antiarrhythmics, beta-blockers, and calcium channel blockers.”

Ernst 2003 and “Data extracted from” Hughes-Berman 2000 were given as the references. The 2003 postcard cited Ernst 2000 as his source. When contacted, Dr. Ernst very graciously provided me with a copy of that elusor paper. This proved to contain a previous presentation of the aforementioned information.

Fetrow & Avila were pharmacists who assembled what they intended to serve as a medical & health professional’s reference work on this subject.

Fetrow & Avila flay stated: “The plant contains a digitalis-like glycoside, either cactine or hordenine (N,N-di-methyl-4-hydroxy-beta-phenethylamine).”

Fetrow & Avila might have gleaned their assertion from elsewhere or it might reflect merely a bad verbal assemblage or translation of what they encountered elsewhere.

However, let’s consider that rather densely inaccurate line that states Selenicereus grandiflorus to contain a cardioactive glycoside, either cactine or hordenine.

Cactine is generally believed to be synonymous with at least one of the know phenethylamines, usually it is said to be a synonym of hordenine. One must, however, ask the question of whether it was this or tyramine, or if it was one or more alkaloids. So far as I can tell, new plant material or medicinal preparations were what was always extracted for analysis and no actual samples of Sultan’s ‘cactine’ were ever analyzed by later workers.

While hordenine, tyramine and N-methyltyramine are thought to be mild stimulants with an indirect action on the heart, they are all simple phenethylamine alkaloids and they are not glycosides. And none of them possess any digitalis-like activity.

Hordenine and tyramine have been reported to be present in at least potentially pharmacologically significant amounts for someone brewing a tea from dried stems (See respectively Petershofer-Halbmeyer et al. 1982 and Wagner & Grevel 1982a) but, as mentioned in an earlier post, the reports of these two alkaloids in this species have always been at odds with each other rather than their being reported as co-occurring.

I can also locate a referenceless claim on-line for the occurrence of N-methyltyramine in this species but not an analytical account that reported its presence. This claim was encountered within a summary report on the veterinary use of a homeopathic solution of Selenicereus grandiflorus that was posted in 1999 by “The European Agency for the Evaluation of Medicinal Products. Veterinary Medicines Evaluation Unit.” My request for clarification, emailed to their posted contact address, was returned as undeliverable.

These alkaloids are also not thought to be particularly active as cardiotonics. In a referenceless claim in Fetrow & Avila it was asserted that the believed mechanism of action of Selenicereus grandiflorus had not been supported in humans and that earlier work had found its preparations inert. While one can find at least assertions to the contrary in medical literature stretching back into the 1800s, it is just as easy to locate agreements with their conclusions.

Even if however the contained alkaloids turn out to be effective cardiotonics (which most workers consider doubtful), the most commonly used - and studied - form appears to be a 1:100 homeopathic dilution; which should not be expected to contain pharmacologically meaningful amounts of alkaloid. Many workers have used dried and prepared stems for making a tincture.

The Lloyd Brothers 1903/1908 “drug treatise” insisted that in addition to high quality and an adequate dosage (not homeopathic), the use of fresh plant juice for preparing the tincture was crucial for it retaining good activity. Finley Ellingwood, writing in that treatise (p.6), claims that the accounts of ineffectuality revolve around heated, poorly prepared or otherwise inactive versions.

Their account of its actions bear reading as they do not suggest it to be particularly toxic or Digitalis-like although they do include descriptions of many actions on cardiac function. (That work is available on-line in PDF format.)

Fetrow & Avila continued and pointed to a more recent study in rats and dogs reporting “a positive inotropic effect on the heart with increased systolic and diastolic pressures and peripheral blood flow volume.” (This was in reference to Hapke 1995 who evaluated pure hordenine using very high dosages.)

They ended their entry with an ‘analysis’ beginning with the peculiar statement “Although night-blooming cereus contains a digitalis-like glycoside, its use as a substitute for digitalis preparations (digoxin or digitoxin) or treatment of heart-related disorders has not been evaluated in humans.”

Fetrow & Avila’s only references were Hapke 1995 and Wadworth & Faulds 1992.

The first paper discusses a pharmacological evaluation of hordenine and makes no mention of cardioactive glycosides, digitalis-like alkaloids or Selenicereus grandiflorus. The second paper appears to have only marginal connectiveness, at best, to the pharmacology of Selenicereus grandiflorus and none to the subject of digitalislike cardioactive glycosides. As was true for Hapke 1995, it does not even mention these compounds or Selenicereus grandiflorus.

While the glycosides cacticin, narcissin and flavonol-3-glycoside were reported as being isolated from its flowers by Horhammer et al. 1966, I cannot determine that any of the three other than narcissin has ever seen pharmacological evaluation. Whatever evaluation narcissin has seen is apparently limited to a Chinese language article so I am presently unable to glean more. As its concentration in Selenicereus grandiflorus is believed to be 0.05% by dry weight and its activity appears to revolve around decreased capillary permeability, it seems unlikely to make a significant contribution toward a purported digitalis-like action.

My present GUESS is that someone somewhere saw that “glycosides” were reported from the flowers of the plant, noticed that the species was considered to be cardioactive in application and assumed there was a connection between the two that is, so far as I can determine, unwarranted. It could simply be that casual reading caused someone to mistakenly
link the words "cardioactive" and "glycoside" together into the familiar phrase "cardioactive glycosides". Whatever the case this appears to have occurred fairly early in its clinical history.

MéLERO 2000 includes a very nice discussion of cardioactive steroids and glycosides that clearly shows that these particular compounds are quite different from any of the steroids or glycosides reported as occurring within any member of the Cactaceae, including *Selenicereus*

Most glycosides have little or no discernible pharmacological activity of any type.

Several other earlier claims asserting that cardioactive glycosides occur in this species have been encountered but I have not yet obtained their purported references, when references are included. (For instance PETERSHOFER-HALBMeyer *et al.* 1982 made a unclearly referenced statement purporting a digitalislike substance -- "[...] digitalisähnliche Stoffe zurückgeführt werden." In their listed references we did find another source that similarly made the claim "[...]

Stendley 1924 also makes the unreference statement "Action similar to digitalis" which no doubt lodged in some people's mind.

Part of this topic achieving life that it was not warranted was probably due to the fact that medical professionals helped propagate the line both on-line and in prestigious peer reviewed journals. Peer review only works when said peers take the time to review the details of published data.

If it concerns something deemed trivial, such as in this case a plant species that was not in use by modern medicine, it is easy for no one to care enough to look deeper, especially if the mistake appears in a commentary supporting the lack of use.

My thanks go to Dr. Edzard Ernst for graciously providing a copy of his paper from *Perfusion*, also to Leo Martin for providing several very pertinent references and to Dr. Martin Terry for his help in obtaining some obscure papers.

One other odd note concerning *Selenicereus grandiflorus*. Some years ago I received a cutting from a San Pedro consumer in Austin who combines the juice of this plant with that brew. He claimed this was a traditional practice but I have never been able to find any support for that claim.

Stenocereus erucav

Anti-type I allergy activity of the saponins with RBL-2H3 (Rat basophilic leukemia) cells was studied by measuring the β-hexosaminidase release inhibitory activity. Thurbersonide A exhibited mild activity (IC₅₀ = 166.9 IM).

Kakuta et al. 2012

Machaerogenic acid was reported to be an antagonist of the CCR6 receptor in a biological screening by Roth 2011.

Trichocereus atacensis

*Trichocereus atacasen*s (San Pedro de Atacama, Chile) has been reported to have mild stimulant activity in human bioassays. [Dosage was 6-8” of a single rib. ANONYMOUS]. Analysis is lacking.

Trichocereus bridgesii

Mescaline estimates based on isolations and posted on-line by anonymous sources in Oz have been between 0.12% to 0.23% with the occasional strain giving 1-2%. The common reports of potency greater than seems to be able to be accounted for by the reported mescaline content (based on human bioassays) has lead a number of people to speculate that an MAOI or some other interactive alkaloid may also be present. More research seems warranted.

Bridgesii is not just potent but apparently used at the folk level.

For example, one correspondent requesting anonymity has reported that bridgesii was used commonly, but privately, in Bolivia and was abundant both in the wild and cultivation. He found numerous examples of intensive propagation as well as heavily harvested plants, The reported potency was described as "phenomenal".

While Miguel Kavlin has claimed he could not find it in use by anyone other than himself in Bolivia, Darylene Dickson reported it being used there and sold in La Paz. However she misidentified it as *T. pachanoi* due to its name San Pedro.

Part of this may stem from an eradication campaign aimed at bridgesii stands around major urban areas, conducted by the Bolivian military around the end of the 1970s. This was apparently in response to an influx of "hippies". One individual recalled seeing soldiers shaving the head of a long haired man in public by during that time period. (Personal communication with Bolivian correspondent requesting anonymity.)

Murple also made an interesting comment that he was unable to locate any stands of bridgesii in the La Paz area that did not show signs of heavy harvesting. He claimed to have encountered a quarter mile hedge of bridgesii in which he was unable to find a single stem that had not seen a harvest.

Trichocereus chiloensis

Used to treat tumors. JOHNSON 1999 (i.e. HARTWELL)
Trichocereus cuzcoensis

Sold in Cuzco as a hair rinse. Kamm personal communication.
Used for treating cancer. Johnson 1999 (i.e. Hartwell)

Plant shown on lower right (in pdf) was sold as *Trichocereus cuzcoensis* but obviously misidentified. The dried commercial material purported to be from this plant is proven to contain mescaline in human bioassays. Said to have been field collected at Huamanga near Cuzco in Peru. Doses of 20 grams are reported by bioassayists.

It may not be a *Trichocereus*. An identification and an analysis is needed.

Trichocereus huallanca or huayanca.

This name is not published. Nor is its variant *T. huayanca*. This is not simply not a good *Trichocereus* species name, this plant is not a *Trichocereus*.

In fact it is unmistakably an *Opuntia* of some sort, most likely in what is now termed the *Austrocylindropuntia*. It does not appear to be *Opuntia cylindrica* despite the general resemblance.

A number of similar appearing species are known, for instance *Opuntia kuehrichiana*, but I have no clue about the actual identity of this *Opuntia* species.

More information and an analysis would be nice but perhaps a waste of time? My present suspicion is this claim is a scam as the dried material sold by the same vendor represented as being as flesh from this plant clearly did not come from the plant pictured. Despite a cutting being organized, no live material was included in the shipment.

See images in illustrated PDF: Notice that those dried pieces came from a columnar cactus with straight ribs and not from this plant which is imbricate? There seems to be too much wrong with this picture to encourage me to waste much more time on it.

Trichocereus pachanoi

Widely employed as a sacramental brew for treating and diagnosing illnesses.
Used for spiritual, shamanic & religious purposes; credited with enhancing precognition & health. Heaven 2013
Employed as emetic, entheogen & hypnotic Johnson 1999
Used for enteritis, evil-eye, gastritis, pneumonia, sterility. Johnson 1999

Monstrose forms are rumored to be especially active in human bioassays. (Anecdotal claim made by vendors in the Lima plant drug market)

Ostolaza 1996 illustrated the cristate form being depicted in a supernatural context by the Paracas culture in Peru. See more in Sacred Cacti Part B San Pedro.

Trichocereus schoenii

Grizzly encountered specimens in Colca Canyon, Peru showing evidence of intensive repeated harvesting suggesting its use for brew preparation. (Personal communication 2005)

Trichocereus scopulicola

First proven to contain Mescaline based on human bioassays.

In the US this was using NMCR grown material but no actual details were included beyond an opinion of substantially greater potency than *Trichocereus pachanoi*. (Personal communication from Margadarz)

In Oz this was using material that was seed grown from Ritter seeds initially but by the late 1960s Australian commercial cactus producers in Victoria began successfully producing their own seeds.

Personal communication from Snu Voogelbreinder reported good results using 800-1000 gm fresh wt. of Australian material.

Voogelbreinder also determined that modern human sacramental usage was wider and older than suspected; by people mistakingly thinking it was *T. pachanoi*!

It might be suspected that this may eventually prove to be true for any indigenous users as well since *bridgesii* and *pachanoi* are apparently used interchangeably in Bolivia by people who would not consider this to be substantially different.

As the species is believed to be extinct in the wild this is rather a moot point.

Trichocereus spachianus

Reported to be “psychoactive” but “different than San Pedro” Anonymous in correspondence 1998.

Another correspondent claims to have determined it to be utterly inactive based on their bioassays.

Another reported becoming “deathly” ill for a few hours.

Needs further analysis.

Trichocereus taquimbalensis

D.M. Turner asserted successful bioassays but included no details.

Grizzly reported encountering specimens in Bolivia showing evidence of harvesting on a scale suggestive of brew preparation. (Personal communication 2005)

Trichocereus terscheckii

Reported fully active in human bioassays conducted in California. Some were stronger than others while others had simple stimulant effects. Anonymous; in correspondence 1998.

Forms with simple stimulant action were described by one user as feeling like “‘dirty’ speed”. Anonymous; in correspondence 2006.

Trichocereus tulhuayacensis

A claim for the presence of mescaline is made by Caycho Jimenez 1977 (page 91) but he cites no reference to support his assertion.

The presence of mescaline would not be surprising in this species.
In considering these cacti, it is important to keep in mind that cacti have many folk uses -- not just use as hallucinogens.

They are common and popularly used as hair rinses, in healing baths, for washing clothing, for treating fevers, stomach or intestinal complaints, as poultices and for 'purifying water.'

The latter I am assuming is in reference to removing heavy metal contamination as is now being done industrially using Opuntia cuticle? See Barrera-Díaz et al. 2005 & 2006. [A future entry on this subject is coming to this book.]

Drinking water polluted by toxic metal run-off from mining activities and/or volcanic soils is common in the Andes.

Traditional Ethanol-sources

Cephalocereus leucocephalus

See comments within *Lemaireocereus thurberi* below.

Carnegiea gigantea

Fruit syrup is used to prepare an intoxicating beverage.

Standley 1924: 909

The only important intoxicating beverage used by the Papago is said to be a cider made from the fruit of the saguaro.

In its habitat, the brew making process is a matter of elaborate ceremony for every village with the brewing, the drinking and the intoxication itself being vital parts of the annual ritual for bringing rain.

While individual families brew their own at home, there is a communal co-creation of the ceremonial brew and the council house is kept warm by a small fire to aid the fermentation process. Each family contributes a jar of boiled juice.

As soon as the juice is decanted from its air-tight container into a large jar, it is mixed with four times as much water. Sometimes a starter from a previous batch may be added if the fermentation is too slow.

Fermentation is allowed to proceed for seventy-two hours. "The resulting drink, called *navai’it*, is a crimson-colored sort of cider with a slightly nauseating taste, which, when drunk in the ritual quantity induces vomiting. This beverage is almost impossible to keep, therefore the tradition is that the whole supply must be consumed within twenty-four hours."

Castetter & Underhill 1935: 26

Lemaireocereus thurberi

In the southern part of their territory, the Papago made a drink similar to *navai’it* using the fruit of *Lemaireocereus thurberi*. It was the ceremonial drink for that region.

Castetter & Underhill 1935: 26

"Fruits of cawe (Lemaireocereus Thurberi) and napisora (Cephalocereus leucopephalus), are used in preparing a fruit *tesguino* in western canyons. Pulp from ripe fruit is mashed upon a mataka or upon any convenient rock. The juice is collected and mixed with water which is boiled for several hours and set aside to ferment. The common catalyst is batari, bark of kakwari (Randia echinocarpa, R. Watsoni and R. laevisgata) and kaya (Coutarea pterosperma), which is readily available in the canyons."

Pennington 1963: 155.

Standley suggested the early accounts of a *cardon* that created a brew which turned the urine red-like-blood referred to Lemaireocereus Thurberi.

Pachycereus pecten-aboriginum

Bye described the fresh juice expressed from young branch tips of the stems of this plant as finding occasional use "[...] by the Tarahumara of the western barrancas to induce visions, along with quick intoxication during “tesguinadas”. The sap may be added to corn “tesguino” or cooked and fermented alone, although this last preparation is said to act as a strong purgative.”

Bye 1979

Other cactus fruit

Ferocactus and *Opuntia* species provide fruit to the Tarahumara that, when they are available in sufficient quantities, are mashed and strained free from seeds. This juice is then diluted with water and boiled in the same manner as the other *tesgüinos*.

Pennington comments that in the Urique Canyon strained but undiluted and unboiled juice obtained from fruits of any of the local cactus species is put in the sun to ferment for several hours. “It is said to turn to “wine” very quickly and when drunk produces a heady sensation that does not last as long as that caused from drinking boiled tesgüino. There is a tradition in the canyons that the setting aside of fruit juice for quick fermentation was formerly a widespread practice.”

Pennington 1963: 155.

The Papago once made a fermented drink from *Opuntia engelmannii* fruit but this was never extensively used and lacked any ceremonial significance.

Castetter & Underhill 1935: 26

Colonche is boiled and fermented *Opuntia* fruit juice. *Nochote* or *nochocle* is a fermented brew made from *Opuntia* fruit juice, pulque and water.

Standley 1924: 865
Cactus Chemistry: By Species

References

[Brackets around a title indicates it is likely an English translation of the actual title.]

Incomplete citations or the use of the qualifier “From” indicates that the paper listed was a second-hand reference. This often means that this work was unavailable to us but was the reference cited by our source.

Agurell, Stig (1969) Experientia, 25 (1): 85. “Cactaceae alkaloids. VIII. N-Methyl-4-methoxy-phenethylamine from Lepidocorypha runyonii (Br. & R.).” [This actually should be (1969) a, but due to our use by ourselves and others in works concerning only mescaline producing cacti, it was felt that changing the other two to b and c, respectively, would create more confusion than it would alleviate.]
Altenschl, Siri Von Reis (1973) Drugs and foods from little-known plants. Harvard University Press
Cactus Chemistry: By Species

Bruhn, Jan G. & Catarina Bruhn (1973) Economic Botany 27: 241-251 “Alkaloids and Ethnobotany of Mexican Peyote Cacti and Related Species.” (Nice anthropological review of other sacred cacti. Their chemical analysis did not include any quaternary or neutral compounds.)

Bruhn, Jan G. et al. (2008) *Journal of Psychoactive Drugs*, 40 (2): 219-222. “Ecstasy analogues found in cacti.” (Jan G. Bruhn, Hesham R. El-Seedi, Nikolai Stephanson, Olof Beck & Alexander T. Shulgin) [In a personal conversation in 2009, 'Sasha' Shulgin expressed his extreme embarrassment to have been included as an author for such a poor work.]

Cacti etc archives: http://www2.labs.agilent.com/bot/cactus_home. Early references on *Selenicereus* from the 1800s onward can be found in CACTI ETC Digest 4521.

Cactus Chemistry: By Species

Clavijero, Francisco Javier (1789) *Historia del Nuevo Mundo,* (Book 5): 103-143ff (article is in Chinese with an English abstract.) (Sien-Yao Chow, Chieh-Fu Chen & Shih-Ming Chen)

Clavijero, Francisco Javier (1789) *Historia de la antigua ó Baja California,* Four Volumes. Venice. Reprinted in 1852 by Impr. de J.R. Navarro (México) and in 1970 by Miguel Leon-Portilla (México).

Cooper, M. et al. (2013) *Strength Testing and Material Characterization of Cactus Spines.* Senior Project, Materials Engineering Department California Polytechnic State University, San Luis Obispo, 26 pages. (Mary Cooper, Jeff Goldstein, Tom Tarlton)

Correspondents requesting anonymity indicate people sharing bioassay information and/or analytical data but wisely requesting their identities be omitted due to the current state of illegality for both mescaline possession and usage. The *Entheogen Review* contains the published accounts; personal communications with the bioassayist(s) were the source for the others

Duke (no date) came from the online reference site below.

Duke, James A. (1985) CRC Handbook of Medicinal Herbs. ISBN 0-8493-3630-9. [For folk uses of San Pedros: Duke cited J. A. Duke & K.K. Wain (1981) Medicinal Plants of the World (Computer Index with over 85,000 entries. 3 volumes; 1,654 pages) This one of Duke’s primary references for his published claims but it is poorly to awkwardly referenced. Duke often cites himself as a primary reference even when it is clear that the material was derived from elsewhere in the published literature.

See in “Dr. Duke’s Phytochemical and Ethnobotanical Databases.” at www.ars-grin.gov/duke. Duke’s comment on that site’s reference page might be found illuminating: “Please note that this is far from a complete list of references used by the database, and many more will be documented as time is allotted for such weighty matters.”

EAMP See Under the European Agency for the Evaluation of Medicinal Products. Veterinary Medicines Evaluation Unit.

Engelmann, George (1852) *American Journal of Science and Arts*, 2nd series., 14: 1-5. “Notes on the Cereus Giganteus of South Eastern California and some other Californian Cactaceae.”

Engelmann, George (1852) *Entheogen Review*

Förster, C.F. (1846) *Handbuch der Cacteunkunde*, 285: 519. [Second edition was in 1885]

Cactus Chemistry: By Species

Glaetzle. See Friedrich & Glaetzle

Grieve, Maud (1931) A Modern Herbal: the medicinal, culinary, cosmetic and economic properties, cultivation and folk-lore
of herbs, grasses, fungi, shrubs & trees with all their modern scientific uses. J. Cape.

Gutiérrez-Noriega, Carlos & Guillermo Cruz Sánchez (1947) . (2002). Gupta, R.S.

"From HABERMANN'S CACTUS ALKALOID SUMMARY." (From Štarha’s CACTUS ALKALOID SUMMARY.)

Heffter, Arthur (1894)b Berichte der Deutschen Chemischen Gesellschaft. 27: 2975-2979. “Über zwei Cacteenalkaloïde.” [Pellotine from A. williamsii (0.89%) and Hordenine (Anhaline) from A. fissuratum (0.2 gm from 1 kg)]

Hörhammer, L. et al. (1966) Ber. 99: 1384. [Not obtained yet.]

Kaiser, R. & C. Nussbaumer (1990) Helvetica Chimica Acta, 73: 133-139. “1,2,3,4,4a,5,8,8a-octahydro-4β,8α-dimethylnapthalen- 4a-ol (=dehydrogeosmin), a novel compound occurring in the flower scent of various species of Cactaceae.” [from SchlimpBerger et al. 2004]

Kapadia, G.J. et al. (1969) b Lloydia, 32: 525. (1-Methyl-6,7-di methoxy-8-hydroxy-1,2,3,4-tetrahydroisoquinoline-1-carboxylic acid in L. williamsii proposed as immediate precursor to anhalonidine.) (G.J. Kapadia, M.B.E. Faye, Y.S. [?N] Vaishnav, H.M. Fales & G. Subba Rao)

Karsten, G.K. (1895) Flora Deutschland, Second Edition 457

Kauder, Ernst (1899) b Chemische Central-Blatt, 1: 1244 “Über alkalioide aus Mescal-buttons. I have not been able to locate this paper as cited in the literature. Something may be in error with the citation itself.

CHECK THAT DATA from 1899 WAS INSERTED

Labouret, J. (1853) *Monographie de la Famille des Cactées comprenant la synonymie, les diverses méthodes de classification proposées jusqu'à ce jour pour sa division en genres et sous-genres, et quelques notes sur la germination et la physiologie; Suivie d'un Traité Complet de Culture et d'une table alphabétique des espèces et variétés.* Paris, Dusaq, Librairie Agricole de la Maison Rustique. LXVII + 682 pp

Labouret, J. (1855) *Revue Horticole*, IV. 4: 25 *Cereus tetrapleurus* LABOURET [From BRITTON & ROSE]

Lemmo (1977) *High Times*, (June, No. 22): 76-?. “Psychodelic Cacti.” (page numbers are not present on the last pages.)

Lloyd Brothers (1903, 1908) Drug Treatise, Number II. (Lloyd Brothers, Cincinnati) “A Treatise on Cactus Grandiflorus. Cactus Grandiflorus (Cereus Grandiflorus — Cactus)"

Lundström, Carl (1902) Unknown Mexico: Explorations in the Mexican Sierra Madre and Other Regions, 1890-1898

Maass, C.A. (1905) Montatschrifte für Kakteenkunde, 15: 122 [Echinocactus jorulianus (Rebut) Rebut ex Maass] [from Grym 1997 & Schultes 1940]

Martinez, Maximino (1928) Las Plantas Medicinales de Mexico. Mexico. [From Schultes 1937]

Mata & McLaughlin 1976 in the literature meant Matar & McLaughlin 1972

Cactus Chemistry: By Species

XLII: 3,4-Dimethoxy-β-phenethylamine and Heliamine from the Mexican Cereoid Backbergia militaris."

Mata et al. 1980 meant Mata & McLaughlin 1980

Miller, John (2000) comments forwarded by MS Smith (Ariocarpus bravoanus comment derived from Anderson & Fitz Maurice 1997; secahrostris comment was referenced to personal communication from Ted Anderson in 1999)

Cactus Chemistry: By Species

Parmentier (1838) L’Horticulteur Belge, 5: 66 [Cereus terscheckii] [From Britton & Rose] See also Pfeiffer 1837

Pfeiffer, Louis Georg(e) Karl (1837) Alg. Garten. 5: 370 [Cereus terscheckii Parmentier] [From Britton & Rose]

Pfeiffer, Louis & Friedrich Otto (1843) Abbildung und Beschreibung Bühnender Cacteen. Theodor Fischer; Cassel

Pfeiffer, Louis (1846-1850) Abbildung und Beschreibung Bühnender Cacteen. Vol. 2. Theodor Fischer; Cassel

Pumanguru & McLaughlin 1982 in the literature meant Pumanguru et al. 1982a

N-oxides from Cacti.” (S. Pummangura, Y.A.H. Mohamed, C.-J. Chang & J.L.L. McLaughlin)

Pummangura, S. et al. (1983a Journal of Natural Products, In Press.) [S. Pummangura, J.L.L. McLaughlin, D.V. Davis & R.G. Cooks] [from Lundstrom 1983: This is not in either the 1983 or 1984 author index under any name listed.]

Rebut, Pierre (1905) Monatschrift. f. Kakteenk. 15: 122 [Echinocactus jorumdanianus (REBUT) REBUT] [From SCHULTZES 1940] [Gryn 1997 gives this citation as C.A. Maass 1905]

Aporocactus flagelliformis 260-261
Cactus Chemistry: By Species

Cereus grandiflorus 249-250
Eriocereus jasbertyi 240
Eriocereus tephrocatus 244-245
Myrtillocactus geometrizans 224-225
Pilocereus ephorbioides 254-255
Piptanthocereus beneckei 226-227
Piptanthocereus jamacaru 229-230
Piptanthocereus peruvianus 232-233
Stenocereus stellatus 253-254
Trichocereus macrogonus 236-237
Trichocereus spachianus 237-238
Remington, J.P. et al. (eds.) (1918) The Dispensatory of the United States, 20th edition. (Joseph P. Remington, Horatio C. Wood, & others) [From the online version at The Southwest School of Botanical Medicine http://www.swsbm.com]
Roca, Juan (1930) Anales del Instituto de Biología de la Universidad Nacional de México. 1 (3): 204. “Nota Preliminar Acerca del Estudio Quimico del Pachycereus Marginatus.”
Roca, Juan (1931) Anales del Instituto de Biología de la Universidad Nacional de México, 2 (2): 133-137. “Estudio Quimico Preliminar del Pachycereus Marginatus.”
Roca, Juan (1932) Anales del Instituto de Biología de la Universidad Nacional de México, 3 (1): 19-23. “Análisis Quimico del Pachycereus Marginatus.”

Salm-Dyck (1834) *Cact. Hort. Dyck* 1834: 334 [From Salm-Dyck (1834)]

Cereus strigosus: 27
Cereus candicans: 27
Cereus chilenis: 27
Cereus chilenis f. fulvibarbis: 27
Cereus chilenis f. brevispinulus = *C. quintero*: 27
Cereus gladiatus: 28

Cereus brevispinulus: 51
Cereus bridgesii: 48 & 208-209
Cereus candicans: 43
Cereus chilenis: 44 & 198
Cereus chiloensis: 44
Cereus eburneus: 47
Cereus Forbesii: 47 & 206
Cereus fulvibarbis: 44
Cereus fulvispinus: 46
Cereus gladiatus: 48
Cereus grandiflorus: 51 & 216
Cereus intricatus: 43 & 194
Cereus lamprochrous: 43 & 195
Cereus longispinus: 44 & 196
Cereus macrogonus: 46 & 203
Cereus nigricans: 46 & 202
Cereus spachianus: 43 & 194
Cereus tenuispinus: 62
Cereus Terscheckii: 46
Cereus tetragonous: 47

Cereus validus: 48
Echinopsis bridgesii: 38 & 181
Echinopsis valida: 39 & 181

SALM-DYCK 1909 (in the literature) refers to RICCOBONO 1909.

All volatiles were found to be emitted by the perianth. Strongest emission was from the inner and middle tepals and the weakest was from the outer tepals.

On Schlumberger’s relativistic rankings:

Major = Greater than 10% of total volatiles
Minor = Greater than 1% but less than 10% of total volatiles
Trace = Less than 1% of total volatiles

All of the volatiles were found to be emitted by the perianth. Strongest emission was from the inner and middle tepals and the weakest was from the outer tepals.

Schumann, K. (1894) *Monatsschrift für Kakteenkunde*, 4: 36-37. “*Echinocactus Williamsii* LEM.”

Vivanco Hidalgo, Eliana (2000) “Vilcabamba: Conflictos culturales, prácticas y discursos en torno de uso del San Pedro.” Pontificia Universidad Católica del Ecuador, Facultad de Ciencias humanas, Departamento de Antropología. Disertación previa a la obtención de la Licenciatura en Antropología, Quito. 122 pages. Thusfar this document has been unobtainable via any available channels. [from Vivanco Hidalgo 2001 and also http://www.beisa.dk/Publications/BEISA%20Book%20pdf/Chapter%2019.pdf. There has been no response to an inquiry emailed to Bonnie Glass-Coffin who had also cited it.]

Voss, A. (1872) Vilimorrins Ilustrierte Blumengärtnerei, 368.

Weckerle, B. et al. (2001) Flavour Fragrance Journal, 16: 360-363. “Cactus pear (Opuntia ficus indica) flavour constituents—chiral evaluation (MDGC-MS) and isotope ratio (HRGC-IRMS) analysis.” (Bernhard Weckerle, Renate Bastl-Borrman, Elke Richling, Katja Hör, Christiane Ruff & Peter Schreier)

WEISENBORN 1978 (in the literature) refers to J. Weisenborn (Unpublished data)

Weisenborn, J. (Unpublished data). KAPADIA et al. 1970c mentions that Dr. Weisenborn (at Squibb) first presented this in a discussion during the 5th Ann. Meeting of the American Society of Pharmacognosy June 22-25, 1964 (Pittsburgh, PA) and that it was planned for publication submission.

Werdermann, Erich (1931) pages 73, 101 in BACKEREN Neue Kakteenen.

WILLAMAN 1961 (in the literature) meant WILLAMAN & SCHUBERT 1961

Cactus Chemistry: By Species

Zuccarini, Joseph Gerhard (1832-1847) Plantarum novarum vel minus cognitarum, quae in horto botanico herbarioque regio Monacensi servanter, München: Königlich Bayerische Akademie der Wissenschaften.

123
Symbols

1,2-Dimethyl-6,7-dimethoxy-8-hydroxy-3,4-dihydroisoquinoline 38
1,3,6,8-Tetrahydroanthraquinone 17
1,3-Dimethylcitrate 48
1,4-Benzenediamine 77
1,8-Cineol 49
1-Butanol 49
1-Heptanecanol 51
1-Heptanol 49
1-Hexanol 49
1-Methyl-6,7-dimethoxy-8-hydroxy-3,4-dihydroisoquinoline 38
1-Methylcitrate 48
1-Methylmalate 48
1-Nonene-3-ol 49
1-Octanol 49
1-Octene-3-ol 49
1-Pentanol 49
1-Pentene-3-ol 49
1-Phenylethanol 49
2,4-Decadienal 12
2(5H)-Furanone 44
2-Cyclohexen-1-ol 44
2-Cyclohexylethylamine 76
2-Heptenal 12
2-Hydroxymethyl-4-methoxy-a-pyrone 47
2-Hydroxyvittexanthone 17
2-Methoxytyramine 64
2-Methyl-3-buten-2-ol 49
2-Methyl-5,6,7,8-tetraMeO-THIQ 54
2-Methyl-6,7-dimethoxy-8-hydroxy-3,4-dihydroisoquinoline 38
2-Methyl-6,7-dimethoxy-THIQ 54
2-Methylbutanoic acid 49
2-Pentylfuran 49
2-Undecanol 58
3,3'-Dimethylquercetin 51
3,4,5-Trihydroxy-phenethylamine 76
3,4,5-Trihydroxyphenethylamine structure 158
3,4,5-Trimethoxyphenethyl- 76
3,4,5-Trimethoxyphenylalanine 38
3,4-Dihydro-6,7-diMeO-8-OH-1,2-diMe-isoquinolinium structure 159
3,4-Dihydro-6,7-diMeO-8-OH-1-Me-isoquinoline structure 162
3,4-Dihydro-6,7-diMeO-8-OH-2-Me-isoquinolinium ion structure 162
3,4-Dihydro-6,7-diMeO-8-OH-IQ structure 162
3,4-Dihydroxy-5-methoxyphenethylamine 38 structure 158
3,4-Dihydroxybenzoic acid 10, 51
3,4-Dihydroxyphenethyltrimethyl ammonium 77
3,4-Dimethoxy-5-hydroxyphenethylamine 76
3,4-Dimethoxy-a-methyl-5-hydroxyphenethylamine 76
3,4-Dimethoxy-b-hydroxyphenethylamine structure 157
3,4-Dimethoxy-N-formyl-b-hydroxy-N-methylphenethylamine 14
3,4-Dimethoxy-N-methylphenethylamine 8, 9, 14, 15, 18, 19, 38, 42 structure 157
3,4-Dimethoxy,N,N-dimethylphenethylamine 8, 9, 14, 19 structure 157
3,4-Dimethoxyphenethylamine 8, 16, 17, 19, 21, 32, 38, 43, 44, 45, 53, 54, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 68, 70, 71, 9 structure 157
3,4-Methylenedioxyphenethylamine 40, 66
3,5-Dimethoxy-4-hydroxyphenethylamine 36, 38, 76
3,7-Dimethyl-1,5-octadiene-3,7-diol 12
3a-Cumyl-1,3,4-oxadiazolidine-2,5-dione 76
3b,6aSterol diols 34
3b,16b,28-Trihydroxy-D12-oleanen-29-oic acid 44
3-Demethylmescaline 38
3-Hydroxy-4,5-dimethoxyphenethylamine 38, 64, 66 structure 158
3-Hydroxy-4-methoxy-phenethylamine 76
3-Hydroxy-4-methoxyphenethylamine 53 structure 157
3-Methoxy-4-hydroxyphenethyltrimethylammonium 77
3-Methoxyphenethylamine 9
3-Methoxytyramine 8, 16, 17, 19, 21, 32, 38, 53, 55, 61, 63, 64, 65, 66, 68, 70, 71, 76, 9 structure 157
3-Methyl-3-buten-1-ol 49
3-Methylbut-2-enyl acetate 58
<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>Structure Link</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Nitrotyramine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>structure 158</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-OH-4-MeO-PEA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-O-Methyl quercetin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-O-β-D-glucopyranoside</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Oxo-alpha-ionol-β-D-glucopyranoside</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-O-β-D-Xylopyranosyl-(1→2)-β-D-glucopyranosyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-stellatogenin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Pentanol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Pentene-2-ol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3a,19R-Dihydroxygermanican-28-oic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3a-Hydroxytaraxastan-28,20α-oleide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8-Dihydroxy-2-methyl-THIQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4a-Methyl-5a-cholesterol-7-en-3b-ol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4a-Methyl-5a-ergosta-7,24(28)-dien-3b-ol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4a-Methylcholesta-8,14-dien-3b-ol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4a-Methyl-D7-cholen-3b-ol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Ethoxy-6-hydroxymethyl-a-pyrone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Hydroxy-3,5-dimethoxyphenethylamine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8, 16, 22, 44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>, 45, 46, 56, 57, 59, 60, 61, 66, 68, 71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>structure 158</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Hydroxybenzoic acid glycoside</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Hydroxyproline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4'-Malonyl-betanin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30, 31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4'-Malonyl-isobetanin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30, 31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Methoxyamphetamine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Methoxy-b-hydroxyphenethylamine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14, 15, 55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>structure 156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Methoxyphenethylamine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14, 15, 55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>structure 156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Methyl-2-pyridinamine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5,6,7-TriMeO-THIQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5(6)-Dihydro-6-hydroxyterrecyclic acid A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5(6)-Dihydro-6-methoxyterrecyclic acid A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5a-Campestr-7-en-3b-ol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-Acetoxyethyl-2-furaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5a-Cholest-8-(9)-en-3b,6a-diol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5a-Cholest-8,14-dien-3b,6a-diol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5a-Cholest-8,14-dien-3b-ol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5a-Stigmast-7-en-3b-ol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5a-Stigmasta-7,22E-dien-3b-ol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-Hydroxyarnegine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-Methoxy-N,N-dimethylhistamine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-Methoxy-N,N-dimethyltryptamine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-Methyl-2-furancarboxaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-O-[6'-O-(3''-hydroxy-3''-methyl-glutaryl)-β-D-glucopyranoside</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5''-O-E-Feruloyl-2'-apiosylbetanin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30, 31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5''-O-E-Feruloyl-2'-apiosylisobetanin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30, 31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5''-O-E-Feruloyl-2'-apiosylisophylocactin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30, 31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
α-Cedrene 58
α-Pinene 58
α-Pyrene 92
α-Quartz 75
α-Selinene 58
β-Amyrin 18
β-Farnesene 23
β-Hexosaminidase release inhibitory activity 96
β-Ocimene 24
β-Sitosterol 7, 51

A
abdominal pain 92
Acacia berlandieri 76
Acacia rigidula 76, 77
Acanthocereus pentagonus 7
 Activity note 78
Acanthocereus tetragonus 7
Acetic acid 49
Acetoin 49
Acetovanillone 42
aches 93
achuma 63, 66
ACI-9 42
activity note 78
agria 87
aguacolla 66
alastrado 56
alcajer 55
aldehydes 47
Alhagi pseudalhagi 77
alkaloid summary
 by species 4
Alkane 23
Alkene 23
Aminobutyric acid 30
Amphetamine 76
 structure 156
Amyrin 18, 32
 structure 166
analgesic 78, 87, 90, 92
anesthetized cats 84
Anethole 58
angina pectoris 87, 94
Anhalamine 23, 24, 25, 26, 28, 29, 36, 37, 38,
 39, 40, 76, 77
 structure 161
Anhalidine 8, 23, 24, 25, 26, 27, 28, 29, 36, 37,
 38, 39, 40, 45, 53, 54, 61, 76, 77
 structure 161
Anhalonine 23, 24, 25, 26, 27, 28, 29, 36, 37,
 39, 40, 53, 61, 66, 73, 74, 75, 76, 77
 structure 161
Anhalonium elongata
 See as Ariocarpus trigonus 7
Anhalonium jordianum 37
 analysis 7
Anhalonium lewinii 7
Anhalonium williamsii 7
Anhalotine 39
 structure 162
Anisocereus foetidus 7
Anisocereus gaumeri 7
anodyne 87, 93
antagonist
 CCR6 receptor 96
antibiotic 90, 93
anticancer activity 83
antihelminthic 78, 94
anti-hyperglycemic effects 91
anti-inflammatory 91, 92, 94
anti-metastatic activity 90
antimicrobial 79, 87
antineoplastic 21, 84, 87
antioxidant 91
antiproliferation 90
antipyretic 79, 90
antirheumatic 87
antiseptic 90
antisyphilitic 94
antitumor 21
anti-type I allergy activity 96
aortic regurgitation 94
Apigenin 8-C-glucoside 52
Apocynine 42
apoptosis 94
Aporocactus flagelliformis
 Activity note 78
analysis 7
Aposphaerin C 17
appetite stimulant 84
a-pyrone 51
Arabinagalactan 51, 89
Arabinose 9, 10, 16, 45, 46, 47, 48, 51, 61, 75
Arachidonic acid 46
Arachidonic acid 48
Ariocarpus agavoides
 analysis 7
Ariocarpus bravoanus
 activity note 78
 image 7
 ssp. hintonii
 activity note 78
 var. hintonii 7
Ariocarpus denegrii 7
Ariocarpus disciformis 7
Ariocarpus fissuratus
 activity note 78
 analysis 7
 var. fissuratus
 analysis 7
 var. hintonii
 flower 7
 var. lloydii
 analysis 7
Ariocarpus furfuraceous 7
Ariocarpus hintonii
 flower 7
Ariocarpus kotschoubeyanus
 activity note 78
 analysis 7
 water content 7
Ariocarpus retusus
 analysis 7
 water content 7
Ariocarpus scaphirostris
 analysis 8
Ariocarpus trigonus
 analysis 8
Ariocarpus williamsii 8
Arizona cactus pear 90
Arizona hedgehog cactus 83
Arizona state tree 80
Arizonine 10, 45, 53
 structure 160
Austrocylindropuntia cylindrica
 entry 8
Austrocylindropuntia exaltata
 analysis 8
Austrocylindropuntia pachypus
 image 8
Austrocylindropuntia subulata
 analysis 8
Avenasterol 58
ayahuasca admixture 9, 79, 84
Ayahuasca book 6, 174
Aztekium ritteri
 analysis 8

B
baboso 32
backache 87, 91
Backebergia militaris
 analysis 8
Backebergine 9, 54
 structure 160
Backeberg's clone 67
bakanawa 81
bakanawa 81
balsam 93
β-Amyrin 60
 structure 166
β-Amyrin-type terpene 44
 bandage 84
Barbados gooseberry 55
barb-wire cactus 7
batari 98
beasts of burden 86
Benzaldehyde 58
Benzaldehyde 58
Benzaldehyde 58
Benzyl acetate 58
Benzyl alcohol 49, 58
Bergamotene 23
berrycactus 44
berry cactus 90
best edible tunas 91
Betacyanin 7, 46, 47, 48, 50, 52, 55, 56, 63
Betaine 77
Betalains 7, 12, 13, 18, 23, 25, 29, 34, 42, 43,
44, 45, 46, 47, 48, 50, 54, 55, 59, 61, 62
Betalamic acid 59
Betanin 11, 13, 30, 46, 50, 51
5-O-(2′-O-β-D-Apiofuranosyl-
6′-O- malonyl)-β-D-glucopyranoside 59
5-O-[(5′-O-E-feruloyl)-
2′-O-β-D-apiofuranosyl-6′-O-malonyl)]-
β-D-glucopyranoside 59
Betanidin 5-O-(6′-O-malonyl)-beta-
sorophoside 42, 43
Betanidin 5-O-(6′-O-malonyl)-beta-sorophoside 41
Betanidin 5-O-(6′-O-malonyl)-β-sorophoside 42
Betanidin 5-O-β-sorophoside 29, 30, 31
Betanin 7, 9, 10, 11, 13, 21, 29, 30, 31, 41, 42,
43, 44, 46, 47, 48, 50, 51, 52, 55, 56, 59,
61, 63
Betaxanthin 30, 48
Betulin 32, 33
structure 166
Betulinan A 17
Betulinic acid 33, 55, 60, 61
structure 166
Betulinic aldehyde 33
b-Hydroxy-mescaline
structure 159
b-Hydroxymescaline 55
Bianchi & Samorini 79
Big nipple cactus 15
biliousness 90
billberries 90
billberry cactus 44
bioassay 79
birreta de obispo 8
bitaya mawali 92
bites 78, 87
bitter 87
blood circulation 92
blood clotting 93
blood pressure 94
blows & bruises 78
blue myrtle 44
β-Methoxy-3,4-dihydroxy-5-methoxyphenethylamine
76
β-Methoxy-3,4-dimethoxy-N-methylphenethylamine
14
β-Methoxy-3,4-dimethoxy-N,N-dimethylphenethyl-
amine 14
structure 158
b-O-Ethylsynephrine 18
structure 156
boils 90, 92
b-O-Methylsymp平均水平ne 14, 15, 16, 18, 41
structure 156
bonete 8
b-O-Palmityl longispinogenin 63
Borzicactus sepium
analysis 9
Brasiliopuntia brasiliensis
activity note 79
analysis 9
brew 97
Bridgeside A1 65
Bridgeside C1 65
Bridgeside C2 65
Bridgeside D1 65
Bridgeside D2 65
Bridgeside E1 65
Bridgeside E2 65
Bridgesigenin A 63, 66, 96
structure 166
Bridgesigenin B 63, 66
structure 166
Bridgesigenin C 66
structure 166
Browningia 9
Browningia candelaris
analysis 9
bruises 78, 87, 91, 93
β-Sitosterol 11, 15, 19, 21, 33, 44, 46, 47, 52,
63, 64
structure 166
Bufo alvarius 5
buisco 63
burns 84, 90, 93
radiation 90
busi-ra 85
C
cabeza de viejo 35, 41
Cactici 59
cactihuasca 82
Cactine 59, 95
cactus apple 90
cactus fruit 98
Cactus grandiflora 9
cafeyl alcohol 44
caffeic acid 59
Caffeine 11, 29, 34, 56
Calcite 47
Calcium oxalate 19, 47
Calenduladiol 33
structure 166
Calendula officinales 33
Calipamine 14
structure 157
caliz 31
callus 90
calluses 90
calming 79
Calycotomine
structure 161
Campesterol 10, 34
structure 166
cancer 90, 94, 97
uterus 93
cancer remedy 93
candelabro 53
Candicine 11, 17, 19, 28, 34, 39, 50, 62, 63, 65,
68, 70, 73, 76
structure 156
cannabis 87
carcinoma 84
cardiac 84
cardiac arrest 94
cardiac glycosides 94
cardiac stimulant 94
cardioactive glycosides 94
cardiotoxic 87, 94
cardon 53, 92
cardoncillo 93
Cardon dato 32
Carnegiea euphorbioides 9
Carnegiea gigantea
activity note 79
analysis 9
bioassay 80
brew 98
water content 9
Carnegiea 9, 10, 53, 54
structure 161
carotenoid 50
catalyst 98
Catechin 50, 52
cawe 92, 98
cawé 92
CCR6 receptor antagonist 96
Cedrene 58
Cellulose 48
Cephalocereus chrysacanthus 10
Cephalocereus columna-trajani 10
Cephalocereus euphorbioides 10
Cephalocereus gaumeri 10
Cephalocereus glaucescens
analysis 10
Cephalocereus guerronis 10
Cephalocereus hoppenstedtii
analysis 10
Cephalocereus leucocephalus
activity note 81
analysis 10
brew 98
Cephalocereus maxonii 11
Cephalocereus melanostele
analysis purported 11
Cephalocereus nobilis
analysis 11
Cephalocereus sp 11
Cephalocereus tetetzo
analysis 11
Cereine 53
Cereus acranthus 29
Cereus aethiops
analysis 11
Cereus alacriportanus
analysis 11
Cereus arequipensis 13
Cereus argentinensis 13, 62
mislabeled 62
Cereus azureus
analysis 11
Cereus bolivianus 13
Cereus caespitosus 11
Cereus Caespitosus 84
Cereus colossus 13
Cereus comarapanus
analysis 11
Cereus coryne 11
Cereus forbesii
analysis 11
Cereus gigantens 11
Cereus giganteus 11
Cereus glaucus
analysis 11
Cereus grandiflorus 11
Cereus hempelianus 13
Cereus hexagonus
activity note 81
Cereus hirschtianus
analysis 11
Cereus jamacaru
analysis 11
Cereus macrostibas 90
Cereus peruvianus
activity note 81
analysis 12
forme monstrosus
analysis 13
fruit analysis 12
mislabeled 62
Cereus peruvianus monstrosus
analysis 13
Cereus repandus
activity note 81
Cereus rosei 13
Cereus sp
analysis 13
analysis purported 13
image 13
unidentified 13
Cereus speciosus
analysis 13
Cereus sp. Peru 68.0235 13
Cereus stenogonus
analysis 13
XHeliaporus smithii
analysis 13
Cereus tephra canthus bolivianus 13
Cereus thouarsii
analysis 13
Cereus validus
analysis 13
water content 13
chacoub 31
Chaetochiversins 17
Chaetomium globosum 17
Chamaecereus silvestrii
analysis 13
chapiztli 55
chaute 7
chautele 7
Chavin de Huantar 69
chawe 92
chende 56
chente 56
chest 85
chest pain 92
chichibe 56
chichipe 56
Chichipegenin 44, 45, 55, 56, 90
structure 166
chilenola 60
chinoa 56
chirinola 60
chirinole 60
chlortrimeton 84
Cholest-8-en-3b,6a-diol 55
Cholestane
structure 166
Cholestanol
structure 166
Cholesterol 31, 34, 47, 50, 55, 58, 86
structure 166

Choline 13, 77
chollagum 16
Christmas cactus 59
Christmas Cactus 58
chronotropic 84
Chryzasin 17
cicatrizant 94
cider 98
cimora 90
cina 35, 59
circulation 93
Citric acid 19, 29, 47, 48, 52, 55, 57, 58
clears up heat 92
Cleistocactus baumannii
analysis 13
Cleistocactus jujuyensis
analysis 13
Cleistocactus parviflorus
analysis 13
Cleistocactus smaragdiflorus
analysis 13
Cleistocactus strausii
analysis 13
Cobo 81
cochal 44
Cochial acid 44
structure 166
cochineal dye
fixing 91
cochineal insects 90
host 90
cold 87
colonche 98
colors urine red 86
commercial fruit 30
consumption 87
convulsions 84
Copiapoa 13
Corchoionoside C 47, 48
corns 87, 90
Coryneine 61, 77
structure 157
Corynopuntia clavata
analysis 13
Corynopuntia emoryi
analysis 13
image 22
Corynopuntia invicta
analysis 13
Corynopuntia kunzei 22
Corynopuntia reflexispina
activity note 81
Corynopuntia schottii
analysis 14
Corynopuntia stanlyi
 var. kunzei
 analysis 17
 var. stanlyi
 analysis 13, 17
Corypardine 32
 structure 160
Coryphantha bumamma
 analysis 14
Coryphantha calipensis
 analysis 14
Coryphantha compacta
 activity note 81
Coryphantha cornifera
 analysis 14
 var. echinus
 analysis 14
Coryphantha durangensis
 analysis 14
Coryphantha echinus 14
Coryphantha elephantidens
 activity note 82
 analysis 14
Coryphantha greenwoodii
 analysis 14
Coryphantha macromeris
 activity note 82
 analysis 15
 bioassay 82
 runyonii
 activity note 82
 var. runyonii
 analysis 15
Coryphantha missouriensis
 analysis 15
Coryphantha ottonis
 analysis 15
Coryphantha palmeri
 activity note 82
 analysis 15
Coryphantha pectinata
 analysis 15
Coryphantha poselgeriana
 analysis 15
Coryphantha radians 15
Coryphantha ramillosa
 analysis 16
Coryphantha runyonii 16
 activity note 82
Coryphantha scolymoides
 analysis 16
Coryphantha vivipara
 analysis 16
 var. arizonica
 analysis 16
Coryphanthe 14
 structure 156
cough 92, 93
coughs 90
Coumarin 58
counter-irritant 94
Coutarea pterosperma 98
cramps 93
Cranopsis alvaria 5
crazy 85
Crosby & McLaughlin 1973 66
Cruz, Julio 63
Cruz Sanchez 1948 66
Cruz Sánchez 1948b 8
Crystal 82
crystal sand 57, 75
Cuaresmeño 50
cuchuma 68
cuerno 7
cultivar 83
Cyclostenol 34
 structure 167
Cylindropuntia acanthocarpa
 activity note 83
 analysis 16
Cylindropuntia bigelovii
 activity note 83
Cylindropuntia echinocarpa
 activity note 90
 analysis 16
Cylindropuntia fulgida
 analysis 16
Cylindropuntia imbricata
 analysis 16
Cylindropuntia kleiniae
 analysis 16
Cylindropuntia leptocaulis
 activity note 83
 analysis 17
Cylindropuntia ramosissima 17
Cylindropuntia spinosior
 analysis 17
Cylindropuntia versicolor
 activity note 83
 analysis 17, 83
Cylindropuntia whipplei
 activity note 83
 analysis 17
Cymene 58
cytotoxic 94
D
D7-Ergosten-3b-ol 35
D7 Stigmaster-3b-ol 35
D9(11)-12-oxo-oleane 21
D12-18b-Oleanene-3b,16b-diol-28-al 41
D-20,30-Lupen-3b,12b -diol 33
dagger cactus 32
dahlia-rooted cereus 93
datura poisoning 87
Daucosterol 52
Decalactone 49
Decan-2-one 58
Decanal 58
Decanoic acid 49
Decanoic acid ethyl ester 44
de Castilla 47, 48
decongestant 90
der deer grease 93
Deglucopterocereine 57
structure 162
Deglucopterocereine-N-oxide 57
structure 162
Dehydroascorbic acid 52
Dehydroeosmin 17, 18, 20, 21, 23, 24, 26, 54,
57, 73
Dehydroheliamine 9, 10, 54
structure 160
Dehydrolemaireocereine 9, 54
structure 160
Dehydroronortehuanine 54
structure 162
Dehydroronweberine 54
structure 163
Dehydropachycereine 54
structure 163
Dehydrosalsolidine 10, 54
structure 160, 161
Denmoza rhodacantha
analysis 17
dermatitis 94
desert strawberry 84
Desoxyphylllyrigenin 60
detectable alkaloids 13
devilís head 19
diabetes 87, 90, 92, 93, 94
diarrhea 81, 83, 90, 91, 92
Diarrhea 81, 91
digestive problems 93
digitalis 94
digitalis adjuvant 87
Digitalis-like 95
digitalis-like cardioactive glycosides 59
Dihydrokaempferol 19, 47, 48
Dihydrokaempferol 7-O-glucoside 19
Dihydromyricetin 19
Dihydromyricetin 7-O-glucoside 20
Dihydroquercetin 19, 47, 48, 91
Dihydroquercetin 7-O-glucoside 19
Dihydroxystersols 34
Dimethyltryptamine 20, 64, 71
diuretic 81, 83, 90, 92, 94
Djerassi
aviso concerning 5
DMT 20, 64, 71, 83
Dodecalactone 49
Dodecane 58
Dodecanoic acid 49
Dolichothele baumii
analysis 17
Dolichothele longimamma
analysis 17
Dolichothele melaleuca
analysis 18
Dolichothele sphaerica
analysis 18
Dolichothele surculosa
analysis 18
Dolichothele uberiformis
Activity note 83
analysis 18
Dolichotheline 17, 18
Doña ana 15
Dopamine 39, 76, 9
Dotriacontane 15
dropsy 83, 94
Drosophila pachea 86
drunk 83
druses 13, 16, 19, 24, 40, 45, 47, 50, 57, 75
Dumortierigenin 32
structure 167
Dumortierigenin 3-0-a-L-rhamnopyranosyl
(1→2)-β-D-glucopyranosyl(1→2)-
β-D-glucuronopyranoside 32
Dumortierinoside A 32
Dumortierinoside A methyl ester 32
dysentery 88, 90, 92
dyspepsia 91
dyspnea 87
dysuria 92

E
E-2-Hepten-1-ol 49
E-2-Heptenal 49
E-2-Hexen-1-ol 49
E-2-Hexenal 49
E-2-Pentene-1-ol 49
E-2-Octen-1-ol 49
E-2-Octenal 49
E-2-Hexyl acetate 49
E-2-Nonenol 49
E-2-Octenyl acetate 49
E-2-Nonenal 49
E-2-Octenal 49
E-3-Hexen-1-ol 49
EAMP 1999 59
earache 88, 89, 90, 93
Echinocactus arechavaletai 18
Echinocactus caespitosus
analysis 19
Echinocactus concinus 19
Echinocactus grandis
analysis 19
Echinocactus horizonthalonius
analysis 19
Echinocactus hystrix 19
Echinocactus ingens
See as Echinocactus platycanthus 19
Echinocactus jourdaniana 37
Echinocactus lewinii 19
Echinocactus lewinii var. jourdaniana 37
Echinocactus platycanthus 19
Echinocactus polycephalus
analysis 19
var. xeranthioides
analysis 19
Echinocactus pruinosus 19
Echinocactus ritteri 19
Echinocactus texensis 19
Echinocactus visnaga
analysis 19
Echinocactus williamsonii 19
Echinocereus acifer
analysis 19
Echinocereus blanckii
analysis 19
water content 19
Echinocereus chloranthus
analysis 19
Echinocereus chrysocentrus 84
Echinocereus cinerascens
analysis 19
Echinocereus coccineus 84
Activity Endnotes 83
activity note 83
Echinocereus enneacanthus
activity note 83
var. stramineus
analysis 19
Echinocereus fendleri 84
eaten 83
Echinocereus gonacanthus
eaten 83
Echinocereus leeanus 84
Echinocereus mamillosum
activity note 84
Echinocereus merkerii
analysis 19
Echinocereus pectinatus 19
Echinocereus reichenbachi
activity note 84
Echinocereus rigidissimus 84
Echinocereus salm-dyckianus
Activity Endnotes 83
activity note 83
Echinocereus triglochidiatus
Activity Endnotes 83
eaten 83
tryptamines purported 20
var. arizonicus
activity note 83
DMT purported 83
var. gurneyi
analysis 19
var. neomexicanus
analysis 20
var. paucispinus
analysis 20
Echinocereus viridiflorus 20
Echinofossulocactus multicostatus
analysis 20
Echinomastus dasyacanthus 20
Echinomastus intertextus 45
var. dasyacanthus 20
Echinopsis andalgalensis 20
Echinopsis bridgesii 20
Echinopsis camarguensis 20
Echinopsis candidans 20
Echinopsis chiloensis 20
Echinopsis eyriesii
analysis 20
water content 20
Echinopsis fulvilana 20
Echinopsis gigantea 20
Echinopsis huascha 20, 65
synonyms 65
Echinopsis kermesina 20
Echinopsis lageniformis 20
Echinopsis lamprochloa 20
Echinopsis lobivioides 65
Echinopsis macrogona 20
Echinopsis mamillosa 20
Echinopsis manguinii 20
Echinopsis multiplex 21
activity note 84
Echinopsis obrepanda
analysis 21
Echinopsis pachanoi 21
Echinopsis pasacana 21
Echinopsis pecheretiana 65
Echinopsis peruviana 21
ssp. puquisiens 21
Echinopsis rhodotricha
 analysis 21
Echinopsis rowleyi 65
Echinopsis schickendantzii 21
Echinopsis scopulicola 21
Echinopsis spachiana 21
Echinopsis strigosa 21
Echinopsis taquimbalensis 21
Echinopsis terscheckii 21
Echinopsis thelegona 21
Echinopsis thelegonoides 21
Echinopsis triumphans
 analysis 21
Echinopsis tubiflora
 analysis 21
eclampsia 78
E,E,2,4-Heptadienal 49
Eicosanol 15
Eisacol 61
elephant cactus 53
emetic 87, 97
emission rates variable 57
emollient 90
endophytic fungi 90
endophytic fungus 49
enteritis 97
enterrhagia 81
entheogen 87, 97
Epicatechin 50, 52
Epiphrine 15
 structure 157
Epinine 39, 157
Epiphyllum oxypetalum
 activity note 84
Epiphyllum sp 21
 activity note 84
Epiphyllum truncatum
 See as Schlumbergera truncata 21
Epithelantha micromeris
 activity note 85
 analysis 21
Epithelanthate
 structure 167
Epithelanthic acid 21
Epoxy linalool 12
equine herpes virus 92
Eriocereus guelichii
 analysis 21
Eriocereus sp 21
Eriodictyol 47, 48
Eruca-saponin A 60
Erynginol A
 structure 167
erysipelas 90
Erythrodiol 18, 32, 33, 56
floral scent 17, 18, 54, 57, 73
emission rates variable 57
flor de cuerno 78
flor del cuerno 7
flor del látigo 7
floricuerno 7
FR 856 69
FR 991 70
fractures 87, 91
fragrance 49
free radical scavenging 91, 92
Friedelan-3a-ol 52
structure 167
Friedelin 51, 52
structure 167
frightening 85
frog 83
Fructose 12, 48
Fusarium oxysporum 90

G

GABA 30
Gadoleic acid 46
Galactose 9, 10, 15, 16, 19, 45, 46, 47, 48, 49, 51, 61, 75
Galacturonic 75
Galacturonic acid 9, 16, 46, 47, 48, 61
Galic acid 50, 52
garambullo 35, 44, 45, 90
garumbulo 83
gastric pain 94
gastric ulcer 92
Gastric ulcers 93
gastritis 97
gastrointestinal disturbances 83, 87
Gennaro et al. 1996 66
geraniol 49
gigante 59
Gigantine 9, 10
structure 161
giganton 64, 66
Ginkangyoku 37
Glandulicactus crassihamatus
analysis 22
Globosuxanthone A 17
Globosuxanthone B 17
Globosuxanthone C 17
Globosuxanthone D 17
glochids 173
glory of Texas 61
Glucaric acid 10, 19, 36, 40, 52, 53, 54
Glucose 10, 12, 47, 48, 55
Glucuronic acid 47, 48, 55
Glushinskite 47
golden spined strawberry 84
gonorrhea 92
Gonzales Huerta 1960 66
good luck fetish 79
Gorman 89
GR 1086 36, 37
Grave's disease 94
grosellero 55
Grusonia bradtiana
analysis 22
Grusonia clavata
see as Corynopuntia clavata 22
guinea-pig ileum 84
guinea-pig lungs 84
guinea-pig tracheal chain 84
guinea-worms 90, 92
Gummosogenin 41, 59, 167
Gummososide A 59
Gummososide A methyl ester 59, 96
activity note 96
Gymnocalycium aguirreanus
analysis 22
Gymnocalycium begunii
analysis 22
Gymnocalycium horripilus
analysis 22
Gymnocalycium knuthianus
analysis 22
Gymnocalycium mandragora
analysis 22
Gymnocalycium roseanus
analysis 22
Gymnocalycium viereckii
analysis 23
Gymnocalycium achirasense
analysis 23
Gymnocalycium albispinum
analysis 23
Gymnocalycium andreae
analysis 23
Gymnocalycium anisitsii
analysis 23
Gymnocalycium asterium
analysis 23
Gymnocalycium baldianum
analysis 23
Gymnocalycium bayrianum
analysis 23
Gymnocalycium bodenbenderianum
ssp. intertextum
analysis 23
Gymnocalycium boszingianum
analysis 24
Gymnocalycium bruchii
analysis 24
Gymnocalycium calochlorum
analysis 24
Gymnocalycium cardenasianum
analysis 24
Gymnocalycium carminanthum
analysis 24
Gymnocalycium chubutense
analysis 24
Gymnocalycium comarapense
analysis 24
Gymnocalycium curvispinum
analysis 24
Gymnocalycium delaetii
analysis 24
Gymnocalycium denudatum
analysis 24
Gymnocalycium eytianum 24
Gymnocalycium fleischerianum
analysis 25
Gymnocalycium friedrichii
analysis 25
Gymnocalycium gibbosum
analysis 25
pH of juice 25
water content 25
Gymnocalycium horridispinum
analysis 25
Gymnocalycium leeanum
analysis 25
Gymnocalycium marsoneri
analysis 25
Gymnocalycium mazanense
analysis 25
Gymnocalycium megalothelae
analysis 25
Gymnocalycium mesopotamicum
analysis 25
Gymnocalycium mihanovichii
analysis 25
Gymnocalycium monvillei
analysis 25
Gymnocalycium moserianum
analysis 26
Gymnocalycium multiflorum
analysis 26
Gymnocalycium netrelianum
analysis 26
Gymnocalycium nigriareolatum
analysis 26
Gymnocalycium oenantheum
analysis 26
Gymnocalycium paraguayense
analysis 26
Gymnocalycium pflanzii
analysis 26
Gymnocalycium pungens
analysis 26
Gymnocalycium quehlianum
analysis 27
Gymnocalycium raghesii
analysis 27
Gymnocalycium riograndense
analysis 28
Gymnocalycium riojense
analysis 27
ssp. kozelskyanum 27
ssp. paucispinum 27
Gymnocalycium saglione
analysis 28
Gymnocalycium schickendantzii
analysis 28
Gymnocalycium stellatum
analysis 28
Gymnocalycium strigianum
analysis 28
Gymnocalycium tillianum
analysis 28
Gymnocalycium triacanthum
analysis 28
Gymnocalycium uebelmannianum
analysis 29
Gymnocalycium valnicekianum
analysis 29
Gymnocalycium vatteri
analysis 29

H

H 18568 64
Haageocereus acranthus 78, 85
activity note 85
analysis 29
Haageocereus cephalomacroystibas 85
activity note 85
hair black 92
hair rinse 97
hair-thonic 92
hallucinations 84
hallucinogen 79, 92
hallucinogenic 82
Hamatocactus hamatocanthus 29
Hariota salicornioides
analysis 29
Harrisia adscendens
analysis 29
Harrisia divaricata
activity note 85
Harrisia gracilis
activity note 85
Harrisia nashii 85
 activity note 85
Haseltonia columna-trajani 29
HBG 34963 61
headache 87, 92, 93, 94
headaches 85
healing 87
heart affections 78
heart failure 94
heart stimulant 87
hecho 92
hedgehog cactus 84
Helibravo chende 29
Heliamine 9, 10, 53, 54
 structure 160
Helianthocereus andalgalensis 29, 65
Helianthocereus atacamensis 29
Helianthocereus grandiflorus 65
Helianthocereus huascha 29, 65
Helianthocereus hyalacanthus 65
Helianthocereus pasacana 29
Helianthocereus pecheretianus 65
Helianthocereus poco 29
Helianthocereus speciosus 29
Helmin & Brenneisen 1992 66
hemorrhoids 92
Heptadecane 23
Heptadecenal 49
Heptan-2-one 58
Hepten-1-ol 49
herpes simplex virus type 2 92
Hertrichocereus beneckei 29
Hexadecane 58
Hexalactone 49
Hexanal 49
Hexanoic acid 49
Hexenal 49
Hexyl acetate 49
hierba de la alferecía 7
high blood pressure 94
hikora rosapara 87
hikuri 83, 88
HIV-1 92
hombre viejo 35
Homopiperonylamine 40, 66
ho’o’k iwa 93
ho’o’k iwa 93
Hordenine 7, 8, 11, 12, 13, 14, 15, 16, 17, 18,
 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
 32, 34, 36, 37, 38, 39, 41, 43, 46, 50, 52,
 54, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70,
 71, 72, 73, 74, 75, 76, 77, 95
 structure 156
horned toad cactus 88
horse crippler 19
huallanca 97
Huamanga 97
Huancabamba 67, 86
huayanca 97
huevo de venado 93
human bioassay 63
Hydrocotarnine
 structure 161
Hydrohydrastinine
 structure 161
Hyloceratin 29, 30, 31
Hylocereus costaricensis
 analysis 29
Hylocereus costaricensis X purpusii
 analysis 29
Hylocereus Hybrid 1
 analysis 30
Hylocereus Hybrid 35
 analysis 30
Hylocereus Hybrid 95
 analysis 30
Hylocereus monacanthus
 See as Hylocereus polyrhizus 30
Hylocereus ocamponis
 analysis 30
Hylocereus polyrhizus
 analysis 30
Hylocereus polyrhizus X sp. 487
 analysis 30
Hylocereus polyrhizus X undatus
 analysis 30
Hylocereus purpusii
 analysis 31
Hylocereus sp. 487
 analysis 31
Hylocereus sp. 487 X polyrhizus
 analysis 30
Hylocereus undatus
 activity note 85
 analysis 31
Hylocereus undatus X sp. 487
 analysis 30
Hyperin 50
hypnotic 97
hypotensive 92
hysteria 87
hystric lactone 32, 33

I

Incilius alvarius 5
Indicaxanthin 30, 48
infection 87
inflammation 90, 91, 92, 94
inflammatory conditions 92
influenza 87
influenza virus 92
inhibits viral replication 92
inhibit XO activity 91
inotropic 84, 95
insanity 85
insect growth regulation 90
insecticidal 88, 90
insomnia 92
internulcer 90 [This is a word from James Duke that I am not able to define.]
intestinal disorders 87
intestine 84
intoxicant 79, 87
intoxicating beverage 98
introduction 4
invigorates blood 92
Iron 48
Islaya minor
analysis 32
Iso-2'-apiosyl-betanin 59
Isoanhalamine 39
structure 161
Isoanhalidine 39
structure 161
Isoanhalonidine 39
structure 161
Isobackebergine 9, 54
structure 160
Isobetanidin 30, 50
Isobetanin 9, 10, 11, 13, 21, 29, 30, 31, 41, 42, 43, 44, 46, 47, 48, 50, 51, 52, 55, 56, 61, 63
Isocitric acid 10, 14, 21, 52, 53, 54, 59, 61
Isohylocerenin 29, 30, 31
Isolatocereus dumortieri 32
Isonortehuanine 54
structure 162
Isonorweberine 54
structure 160
Isopachycereine 54
structure 163
Isopachycereine 54
structure 163
Isopellotine 39
structure 161
Isophyllocactin 9, 10, 11, 13, 21, 29, 30, 31, 41, 42, 43, 44, 46, 47, 51, 52, 56, 59, 61, 63
Isoquinoline
key to structural table 163
Isoquinolines
structure table 160
Isoquinolines
structure table 160
Isorhamnetin 31, 47, 48, 50, 51, 59
3-O-β-D-glucopyranoside 31
3-O-β-D-glucoside 31
Isorhamnetin-
3-O-galactoside 52
3-O-glucoside 52
Isorhamnetin-3-galactoside 50
Isorhamnetin-3-glucoside 46, 47, 50, 51
Isorhamnetin-3-O-rutinoside 51
Isorhamnetin-3-rhamnogalactoside 50
Isorhamnetin 3-rhamnosylgalactoside 50
Isorhamnetin-3-rhamnosylgalactoside 46, 47, 50, 51
Isorhamnetin 3-rutinoside 50
Isorhamnetin-3-rutinoside 46, 47, 50, 51
Isorhamnetin-3-β-galactoside 59
Isorhamnetin-3-β-rutinoside 59
Isosalsolidine 54
structure 161
Isosalsoline 53
structure 160
Itesmol 61
J
jackrabbits 79
Jahuackollai 64
Jamaica 86
jarramatraca 93
Jarum Tujuh Bilah 94
jíkuri 92
joconostle 61
Johnson
Harry, Sr. 64
joint pain 87
joints 87
juco tapatío 31
junco 7, 31
junquillo 7
Juul’s Giant 67
K
Kaempferide 51
Kaempferol 31, 41, 47, 48, 50, 51, 55, 63, 70
3-methyl ether 48
3-O-a-arabinoside 52
3-O-a-L-rhamopyranosyl-(1→6)-β-D-galactopyranoside 31
7-O-β-D-glucopyranoside 51
7-O-β-D-glucopyranosyl-(1→4)-β-D-glucopyranoside 51
Kaempferol-
3-methyl ether 47
Kaempferol 3-galactoside 47, 50, 51
Kaempferol-3-glucoside 16, 17, 20, 51
Kaempferol 3-O-rhamnosylglucoside 20
kaempferol 3-O-a-L-arabinofuranoside 31
kaempferol 3-O-β-D-galactopyranoside 31
kaempferol 3-O-β-D-glucopyranoside 31
kaempferol 3-O-β-D-rutinoside 31
kakwari 98
kaya 98
ketones 47
key to structural tables 163
kidney 91, 93
kidneys 90
kidney toxicity 91
KK340 64
knowledge 87
koubo 12
Krebs acid conjugates 165
Krebs cycle conjugates
structure 165

L
lactogogue 87, 89, 92
Lathosterol 35, 86
Lauric acid 48
laxative 91
lectins 60
Leguminosae 76
Lemaireocereine 9, 53, 54
structure 160
Lemaireocereus aragonii
analysis 32
water content 32
Lemaireocereus beneckei 32
Lemaireocereus chende 32
Lemaireocereus chichipe 32
Lemaireocereus deficiens
analysis 32
Lemaireocereus dumortieri
analysis 32
Lemaireocereus eruca 32
Lemaireocereus euphorbioides 32
Lemaireocereus griseus
analysis 32
Lemaireocereus gummosus 32
Lemaireocereus hollianus
analysis 32
Lemaireocereus humilis 32
Lemaireocereus hystrix
activity note 86
analysis 32
water content 32
Lemaireocereus laetus 78
activity note 86
analysis 33
water content 33
Lemaireocereus longispinus
analysis 33
water content 33

Lemaireocereus marginatus 33
Lemaireocereus matucanense 78
activity note 86
Lemaireocereus mixtecensis 33
Lemaireocereus montanus
analysis 33
Lemaireocereus pruinosis
analysis 33
water content 33
Lemaireocereus queretaroensis
activity note 86
analysis 33, 86
Lemaireocereus quevedonis
analysis 33
water content 33
Lemaireocereus thurberi
analysis 33
brew 98
water content 33
Lemaireocereus thurberii
activity note 86
Lemaireocereus treleasei 34
Lemaireocereus weberi 34
Lemairin 54
Leocereus bahiensis
analysis 34
Lepidocoryphantha macromeris 34
Lepidocoryphantha runyonii 34
leprosy 90, 91
Leuchtenbergia principis
activity note 86
analysis 34
Lewis pulmonary carcinoma 84
Limone 47, 58
linalool 12
Linalool 12, 49, 58
R-(-)-Linalool 49
S-(+)-Linalool 12
linament 87
Linoleic aci 49
Linoleic acid 35, 46, 48
Linolenic acid 35, 46
lipid peroxidation 91
lipoprotein oxidation inhibition 91
Lobivia allegriana
analysis 34
Lobivia andalgalensis 34
Lobivia aurea
analysis 34
Lobivia backebergii
analysis 34
Lobivia binghamiana
analysis 34
Lobivia chlorogona
analysis 34
Lobivia famatimensis
analysis 34
Lobivia formosa
analysis 34
Lobivia huascha 34
Lobivia huashua 34
Lobivia pentlandii
analysis 34
Lobivine 40, 66
Locereol 35
longevity 84
Longimammamine 18
structure 160
Longimammatine 18
structure 160
Longimammididine 18
structure 160
Longimammnine 17, 18, 156
Longimammosine 18
structure 160
Longispinogenin 18, 22, 32, 33, 41, 44, 56, 59,
167
Lophenol 34, 35
structure 167
Lophocereine 35, 36, 52
structure 161
Lophocereus australis
analysis 34
Lophocereus gatesii
analysis 34
Lophocereus miekleyanus 34
Lophocereus sargentianus 34
Lophocereus schottii
activity note 86
analysis 35
Australis 34, 36
analysis 34
miekleyanus
analysis 35
monstrosus
analysis 35
schottii
analysis 35
tenuis
analysis 35
water content 35
Lophocerine 35
Lophocene 35
Lophophine 40, 66
Lophophora diffusa
analysis 36
var Koehresii
analysis 36
Lophophora echinata 40
Lophophora fricii
activity note 86
analysis 37
Lophophora jourdaniana
activity note 86
analysis 37
Lophophora koehresii
analysis 36
Lophophora sp
var. Viesca
analysis 38
Lophophora williamsii
activity note 87
analysis 38, 39
caesipitosa 38
analysis 40
decipiens
analysis 40
echinata 40
pentagona 41
typica
analysis 39, 40
water content 38
Lophophorine 23, 24, 25, 26, 27, 28, 29, 36, 37,
38, 39, 40
structure 161
Lophotine 39
structure 162
lung abscess 92
lung inflammation 93
lungs 93, 94
Lup-20(29)-en-3b,16b,28-triol 34
Lupene 34
Lupenetriol 34
structure 167
Lupenone 59
Lupeol 31, 33, 35, 60
structure 167
Lupeone 31
Lutein 50
Luteolin 47
Luteolin 8-C-glucoside 52
Lycorine 59
M
Macdougallin 34, 44, 90
structure 167
Machaeric acid 41, 59
structure 167
Machaerinic acid 41, 59
structure 167
Machaerocereus gummosus
activity note 87
Machaeroceric acid 60
Machaerogenic acid
 activity note 96
Machaerogenin 61
Macromerine 14, 15, 82
 human bioassay 82
Pharmacology 82
 structure 158
Magnesium oxalate 47
Maihueniopsis darwinii 41
Makino 48
Maleic 48
Malic acid 12, 48, 51
Malonic acid 48
MAM 1219 46
MAM 1307 61
MAM 1308 9
Mamillopsis senilis
 activity note 87
 ethnobotanical 41
Mammillaria arietina
 activity endnote 88
Mammillaria centricirrha
 activity endnote 88
Mammillaria coronata
 analysis 41
Mammillaria craigii 41
 activity note 88
Mammillaria crinita 41
Mammillaria daetlylithelle 41
Mammillaria dioica 41
Mammillaria disciformis 41
Mammillaria donatii
 analysis 41
Mammillaria elongata
 analysis 41
 var. rufrocrocea
 analysis 41
Mammillaria geminispina
 activity note 88
Mammillaria gracilis 41
Mammillaria grahamii 42, 88
 var. olivae 42, 88
 activity note 88
Mammillaria gummifera
 analysis 42
Mammillaria heyderi
 analysis 42
Mammillaria heyderii
 activity note 88
Mammillaria hidalgensis
 analysis 42
Mammillaria karwinskiana
 analysis 42
Mammillaria lewinii 42
Mammillaria longimamma 42
Mammillaria longimamma sphaerica 42
Mammillaria longimamma uberiformis 42
Mammillaria macromeris 42
Mammillaria magnimamma
 activity note 89
 var. divergens
 analysis 42
Mammillaria mainae 88
Mammillaria meiacantha
 analysis 42
Mammillaria melanocentra
 analysis 42
Mammillaria microcarpa
 activity note 89
 analysis 42
Mammillaria multiceps
 analysis 43
Mammillaria neumanniana
 analysis 43
Mammillaria pilcayensis 43
Mammillaria polythele
 activity endnote 89
Mammillaria pulchra
 activity endnote 89
Mammillaria pusilla 43
Mammillaria rhodantha
 analysis 43
Mammillaria roseo-alba
 analysis 43
Mammillaria runyonii 42, 43
Mammillaria saffordii
 analysis 43
Mammillaria seitziana
 analysis 43
Mammillaria senilis 41
Mammillaria setigera
 analysis 43
Mammillaria sphaerica 43
Mammillaria surculosa
 see as Dolichothele surculosa 18
Mammillaria tetranicista
 analysis 43
Mammillaria wildii
 analysis 43
Mammillaria williamsii 43
Mammillaria woodsii
 analysis 43
Mammillaria zeilmanniana
 analysis 43
Mammillaria zuccariniana
 analysis 44
Mammillarinin 41, 42, 43
Mammilarol 42
mandacaru 11
Manganese 48
Manghaslin 51
Maniladiol 18, 22, 44
Marshallocereus aragonii 44
Marshallocereus thurberi 44
mastitis 92
Matucana pujupati 89
Matucana madisoniorum 44
activity note 89
MEAI 60
MEAII 60
measles 90, 91
medicinal 78
Melocactus bellavistensis 44
activity note 89
Melocactus delessertianus
analysis 44
Melocactus depressus
activity note 89
Melocactus maxonii
analysis 44
Melocactus obtusipetalis 44
Melocactus peruvianus
activity note 90
analysis 44
Mescaline 8, 11, 13, 15, 16, 17, 19, 22, 23, 24,
25, 26, 27, 28, 29, 32, 36, 37, 38, 39, 40,
41, 44, 46, 47, 54, 55, 56, 57, 59, 60, 61,
63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,
74, 76, 9, 81, 82, 85, 86, 89, 97
citrimide 39
structure 165
erroreous claim 8
erroreous reports 29
isocitrimide lactone 39
structure 165
maleimide 39
structure 165
malimide 39
structure 165
questionable 29
structure 158
succinamid 39
structure 165
trace reports 29
mescaline-like alkaloid 26
Mescloruvic acid 39
structure 165
Mescalotam 39
structure 162, 165
Mescaloyxlic acid 39
structure 165
Mesembryanthemoidigenic acid 58
Metanephrine 15
structure 157
Methamphetamine 76
structure 156
Methyl 2-methyl-butanoyl 49
Methyl 2(methylthio)-butanoate 49
Methyl 3-hexenoate 49
Methyl 3-hydroxy-butanoate 49
Methyl 3-hydroxybutanoate 49
Methyl benzoate 49
Methyl betulinate 33
structure 167
Methyl butanoate 49
Methylbutanoic acid 49
Methylcholesterol 31, 47
Methyl cinnamate 49
Methylcyclohexane 47
Methyl decanoate 58
Methyl epithelanthate
structure 167
Methylepithelanthate 21
Methyl eucomate 52
Methyl linoleate 51
Methyl machaerinate
structure 167
Methylmachaerinate 21
Methyl oleate 21
Methyl oleanolate 18, 34, 55
structure 168
Methyl queretaroate
structure 168
Methyl salicylate 58
Methyl undecenoate 58
Mexican organ pipe 32
mice 85
Mimosine, methyl ester 76
mitra 8
moles 91
Monvillea spegazzinii
analysis 44
moon cactus 89
Morolic acid 60
mucilage 9, 46, 47, 61, 65, 75
mulato 85
mumps 91
Musk ambrette 76
Myrcone 47
Myristic acid 48
Myrtilocactus cochla
analysis 44
water content 44
Myrtillocactus eichlamii
analysis 44
Myrtillocactus geometrizans
activity note 90
analysis 44
var. grandiareolatus 45
Myrtillocactus grandiareolatus
analysis 45
Myrtillocactus schenckii
analysis 45
Myrtillogenic acid 44
structure 168

N
N-2-Cyclohexylethyl-N-methylamine 76
N-[3,4,5-Trimethoxyphenethyl]-alanine 38
N-[3,4,5-Trimethoxyphenethyl]-glycine 38
N-Acetyl-3,4-dimethoxyphenethylamine 9
N-Acetyl-3-hydroxy-4,5-dimethoxyphenethylamine 39
structure 158
N-Acetylanhalamine 39
N-Acetylanhalonine 39
N-Acetyl DMPEA
structure 157
N-Acetylmescaline 39
structure 159
NAMT
structure 157
Naphthalene 58
napisora 10, 98
Narcissin 47, 48, 50, 59
narcotic 82, 83, 84, 85, 87, 92
navaït 98
Neobuxbaumia euphorbioides
analysis 45
Neobuxbaumia multiareolata 45
Neobuxbaumia scoparia 45
Neobuxbaumia tetetzo 45
analysis 11
Neogomesia agavioides 45
Neolloydia intertexta
var. dasyacantha
analysis 45
Neolloydia intertextus 45
Neolloydia odorata
analysis 45
Neomammillaria runyonii 45
Neoporteria ebenacantha
analysis 45
Neoraimondia arequipensis
var. roseiflora
analysis 45
Neoraimondia macrostibas
activity note 90
analysis 45
water content 45
Nerolidol 21, 23, 24
nervousness 92
neuroprotective 91
Neverland gene 86
N-Formyl-3-hydroxy-4,5-dimethoxyphenethylamine 39
structure 158
N-Formylanhalamine 39
N-Formylanhalinine 39
N-Formylanhalonidine 39
N-Formylanhalonine 39
N-Formylmescaline 39
structure 158
N-Formylnormacromerine 15
N-Formyl-O-methylanhalonidine 39
N-Glycans 41
Nicotine 76, 77
nictating membrane 84
night-blooming cereus 7, 93
N-Isovalerylhistamine 18
N-Methyl-3,4,5-trihydroxy-phenethylamine 76
N-Methyl-3,4-dimethoxy-phenethylamine 21, 36, 38, 54, 56, 71, 72, 76
N-Methyl-3-hydroxy-4,5-dimethoxyphenethylamine 39
structure 158
N-Methyl-3-hydroxy-4-methoxyphenethylamine 76
N-Methyl-3-methoxytyramine 39, 56, 64, 76
structure 157
N-Methyl-4-methoxy-b-hydroxyphenethylamine 17
N-Methyl-4-methoxyphenethylamine 7, 14, 15, 16, 18
structure 156
N-Methyl-6,7-dimethoxy-isoquinolinium chloride
structure 162
N-Methylanhalamine 76, 77
N-Methyl-dopamine 76
N-Methylheliamine 9, 35, 53, 54, 56
structure 161
N-Methylisosalsoline
structure 161
N-Methyllemaireocereine 9
N-Methylmescaline 23, 24, 25, 26, 27, 28, 29, 36, 37, 38, 39, 53, 54, 71, 72, 73, 74, 76, 77, 93
structure 158
N-Methylmetanephrine 15
structure 157
N-Methyl-pachycereine
structure 163
N-Methylpachycereine 53, 54
N-Methylphenethylamine 18, 22, 23, 76, 77
structure 156
N-Methyltryptamine 77
N-Methyltyramin 64
N-Methyltyramine 7, 8, 11, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 36, 37, 38, 39, 41, 43, 46, 47, 54, 56, 59, 61, 63, 64, 65, 68, 69, 70, 71, 72, 73, 74, 76, 77
structure 156
N,N-Dimethyl-3,4-dimethoxyphenethylamine 8, 9, 56, 71
N,N-dimethyl-3,4-methylenedioxyphenethylamine 66
N,N-Dimethyl-3,4-methylenedioxyphenethylamine 40
N,N-Dimethyl-3-hydroxy-4,5-dimethoxyphenethylamine 54
structure 158
N,N-Dimethyl-3-methoxy-4-hydroxyphenethylamine 38
N,N-Dimethyl-3-methoxytyramine 7, 39, 56
structure 157
N,N-Dimethyl-3-methoxy-b-hydroxyphenethylamine 156
N,N-Dimethyl-4-methoxyphenethylamine 9, 156
N,N-Dimethyl-a-methylphenethylamine 76
N,N-Dimethyl-a-methyl-phenethylamine 76
N,N-Dimethylldopamine 76
N,N-Dimethylhistamine 19, 20
N,N-Dimethylmescaline 23, 24, 25, 26, 27, 28, 29, 71, 72, 73, 75
N,N-Dimethyl-phenethylamine 76
N,N-Dimethylphenethylamine
structure 156
N,N-Dimethyltryptamine 20, 64, 71, 77
N,N,N-Trimethyl-phenethyl-ammonium hydroxide 76
N-trimethyl cation of 3-methoxytyramine 77
N-trimethyl cation of Dopamine 77
Norepinephrine 15, 157
Normacromerine 14, 15, 17, 18
structure 157
Normetanephrine
structure 157
Nornicotine 76
Nortehuanine 54
structure 161
Nortriptyline 76
Norweberine 54
structure 163
Notocactus concinnus
analysis 46
Notocactus mammulosus
analysis 46
Notocactus ottonis
analysis 46
N-trimethyl cation of 3-methoxytyramine 77
N-trimethyl cation of Dopamine 77
Nyctocereus guatemalensis
analysis 46

O

Obregonia denegrii
activity note 90
analysis 46
Ochoterenine 53
Ocimene 23, 24
Oct-1-en-3-ol 58
Octan-2-one 58
Octanal 58
Octanoic acid 44, 49
Octanol 49, 58
Oten-1-ol 49
Octopamine
structure 156
ointments 87
Olean-12-ene-3b,16b,28-triol-3-palmitate 63
Oleanene 34
Oleanolic acid 21, 32, 33, 44, 45, 56, 59, 60, 61
structure 168
Oleanolic acid 3-O-α-L-rhamnopyranosyl-
(1→3)-β-D-glucuronopyranosyl 28-O-alpha-D-glucopyranoside 61
Oleanolic aldehyde 18, 34, 56
structure 168
Oleinonate 18
Oleic acid 35, 46, 48
Ollotis alvaria 5
O-Methyladrenaline
structure 157
O-Methylandhalidine 23, 24, 25, 26, 27, 28, 29, 36, 37, 38, 72, 73, 74, 75
O-Methylandhalinine 36, 37, 38
O-Methyl-anhalonidine 40
O-Methylanhalonidine
23, 24, 25, 26, 27, 28, 29, 54
structure 161
O-Methylcandicine 14, 156
O-Methylcorypaline 54, 56
structure 161
O-Methylpellotline 36, 38, 40, 53
structure 162
O-Methylpeyorvuc acid 40
structure 162
O-Methylpeoxylic acid 40
structure 162
O-Methylsyneprhrine 17
Opal 47
opening comments 4
ophthalmia 90, 92
Opuntia
ayahuasca admixture 79
brew 98
Opuntia basilaris 46
Opuntia bergeriana
analysis 46
Opuntia boldinghii
analysis 46
Opuntia bradtiana
see as Grusonia bradtiana 46
Opuntia brasiliensis 79
See as Brasiliopuntia brasiliensis 46
Opuntia clavata
see as Corynopuntia clavata 46
Opuntia comonduensis
analysis 47
Opuntia compressa 91
activity note 91
Opuntia curvispina 47
Opuntia decumbens
analysis 47
Opuntia dejecta
analysis 47
Opuntia diademata
analysis 47
Opuntia dillenii 47
activity note 92
reticulata 91
Opuntia elatior 90
activity note 90
analysis 47
Opuntia ellisiana
analysis 47
Opuntia engelmannii
activity note 90
analysis 47
brew 98
Opuntia erinacea
var. hystricina
analysis 47
Opuntia ficus-indica
activity note 90
fruit
fragrance 49
water content 47
Opuntia fragilis
activity note 91
Opuntia fulgida
activity note 91
Opuntia guatemalensis
analysis 50
Opuntia Hernandezii 90
Opuntia hickenii
analysis 50
Opuntia horrida 90
Opuntia humifusa
activity note 91
analysis 50, 91
Opuntia imbricata
activity note 91
Opuntia leuchotricha
analysis 50
Opuntia lindheimeri
activity note 91
analysis 50
Opuntia littoralis
var. littoralis
analysis 50
var. martiniiana
analysis 50
Opuntia longispina
analysis 50
Opuntia macrocentra
analysis 50
Opuntia maldonadensis
analysis 50
Opuntia matudae 50
Opuntia megacanthus
activity note 91
Opuntia megarhiza
activity note 91
Opuntia monacantha 50
Opuntia moniliformis
activity note 91
Opuntia nopalilla 90
Opuntia pachypus
see as Austrocylindropuntia pachypus 51
Opuntia paraguayensis
analysis 51
Opuntia penicilligera 50
Opuntia phaeacantha
activity note 91
analysis 51
var. discata
analysis 51
var. major
analysis 51
Opuntia pilifera 51
Opuntia plumbea
activity note 91
Opuntia polyacantha
activity note 91
analysis 51
Opuntia pseudo-tuna
activity note 91
Opuntia reflexispina
activity note 81, 91
Opuntia ritteri
analysis 51
Opuntia robusta
analysis 51
Opuntia soehrensii
analysis 61
Opuntia sp
activity note 92
Opuntia spp. hybrids
analysis 51
Opuntia streptacantha
analysis 51
Opuntia stricta
analysis 51
var. dillenii
activity note 92
analysis 51
Opuntia tomentosa
analysis 52
Opuntia tuna 90
activity note 92
Opuntia violacea
var. macrocentra 52
Opuntia violacea 50
Opuntia vulgaris
analysis 52
Opuntia zebrina 91
Opuntia B 52
Opuntiol 47, 51
Opuntioside I 51
Opuntioside-I 92
Opuntisterol 51
Opuntisteroside 51
organillo 59
organ 7, 52
organ pipe 33
Orientin 52
orthopedic ailments 87
OST 92701 69
Ostolaza #84284 8
Oxalate druses 40
Oxalic acid 48
Oxyallobetulin 61
Oxycandicine 61

P

Pachanane 32
Pachanol A 66
structure 168
Pachanol B 66
Pachanol C
revised structure 65
Pachanol D 32
Pachanoside C1 65
Pachanoside D1 65
Pachanoside E1 65
Pachanoside F1 65
Pachanoside G1 65
Pachanoside I1 32
Pachycereine 53, 54, 163
Pachycereus calvas 52
Pachycereus chrysomallus
analysis 52
Pachycereus gaumeri 52
Pachycereus gigas 52
Pachycereus grandis
analysis 52
Pachycereus hollianus 52
Pachycereus marginatus
activity note 92
analysis 52
Pachycereus pecten-aboriginin
activity note 92
analysis 53
brew 98
Pachycereus pringlei
analysis 53
http://www.largelyaccurateinformationmedia.com

Pachycereus queretaroensis 53
Pachycereus schottii 53
Pachycereus sp 53
Pachycereus tehuanaltepecanus analysis 53
Pachycereus tetetzo
See as Cephalocereus tetetzo 53
Pachycereus thruberi
See as Lemaireocereus thruberi 53
Pachycereus weberi analysis 53
padre nuestro 44
pain 92
painful joints 87
Palmitic acid 35, 46, 48, 49
Palmitoleic acid 46
panacea 87
Paraphaeosphaeria quadriseptata 17
Paraphaeosphaerin 17
Pardanani et al. 1977 68
Parodia mutabilis 54
Parodia procera analysis 54
Parodia sanguiniflora
analysis 54
Parodia stuemeri analysis 54
Parodia tuberculosa analysis 54
PCH et al. 6212 67
p-Coumaric 10
p-Coumaric acid 52
p-Cymene 58
Pectenin 53
Pectenine 53, 84
Pelecyphora aselliformis activity note 93
water content 54
Pelecyphora pseudopectinata 55
Pellotine 8, 23, 24, 25, 26, 27, 28, 29, 32, 36, 37, 38, 40, 41, 53, 55, 56, 66, 72, 73, 74, 75 structure 161
Penduletin 47
Peniocereus fosterianus analysis 55
Peniocereus greggii 55 activity note 93
Peniocereus hirschtianus 46
Peniocereus striatus activity note 93
Peniocerol 34, 44, 55, 90 structure 168
Pentene-1-ol 49
Pereskia aculeata analysis 55
Pereskia autumnalis analysis 55
Pereskia bleo 90 activity note 94
acute toxicity 94 analysis 55
LD50 94
Pereskia corrugata analysis 55
Pereskia cubensis analysis 55
Pereskia godseffiana analysis 55
Pereskia grandiflora analysis 55
Pereskia grandifolia activity note 94 acute toxicity 94 analysis 55
LD50 94
Pereskia guamacho activity note 94
Pereskia pititache 55 analysis 55, 94
Pereskia tampicana analysis 55
Pereskioipsis chapistle analysis 55
Pereskioipsis porteri analysis 55
Pereskioipsis scandens 56 Perillalcohol 49 pertussis 90 Peru 56.1153 64
Peru 64.0762 67
Peru 68.0235 13
Peruvian torch 68
Peyoglunal 40 structure 165
Peyoglutam 40 structure 162, 165
Peyonine 40 structure 165
Peyorphine 40, 77 structure 162
Peyorubic acid 40 structure 162
peyote 7, 8, 38, 54, 79, 88, 93
peyote cimarron 78
peyote cimarrón 7, 8, 79
peyote mulato 85
peyotillo 54, 93
Peyotine 40 structure 162
Peyoxylic acid 40
structure 162
pezuña de venado 7
pH 20, 48
phagocytosis 89
Phenethylamine 9, 18, 32, 55, 72, 73, 74, 76, 77
structure 156
phenethylamines
key to structural table 159
structure table 156
Phenoxyethanol 58
Phentolamine 84
Phenylethanol 49
Phillyriside A 60
Phrynoidis alvarius 5
p-Hydroxyamphetamine 76
p-Hydroxybenzaldehyde 10
p-Hydroxybenzoic acid 10, 51
p-Hydroxyphippecolamide 77
Phylloca tins 7, 9, 10, 11, 13, 21, 29, 30, 31, 41,
42, 43, 44, 46, 47, 51, 52, 55, 56, 59, 61,
63
Phyllocactus ackermannii 56
Phyllocactus hybridus 56
Physcion 49
Phytosterols 34
piles 91
Piloceredine 35
Pilocereine 34, 35, 52
structure 163
Pilocereus chrysacanthus
analysis 56
Pilocereus chrysomallus 56
Pilocereus euphorbioides 56
Pilocereus gaumeri 56
Pilocereus giganteus 56
Pilocereus glaucescens 56
Pilocereus gounellei
analysis 56
Pilocereus guerreronis
analysis 56
Pilocereus leucocephalus
See as Cephalocereus leucocephalus 56
Pilocereus maxonii
analysis 56
Pilocereus nobilis 56
Pilocereus pasacana 56
Pilocereus sargentianus 56
Pilocereus schottii 56
Pilocereus senilis 56
Pilocereus thurberi 56
Pilosocereus chrysacanthus 56
Pilosocereus gaumeri 56
Pilosocereus glaucescens 56
Pilosocereus guerreronis 56
Pilosocereus leucocephalus 56
Pilosocereus maxonii 56
Pilosocereus nobilis 56
pimples 92, 93
Pinene 58
Piplecacolamide 77
Piscide 48
Piscide acid 48
Piscide acid diethyl ester 48
Piscide acid monoethyl ester 48
Pishicole 86
pita ha ya 7, 19, 31, 33, 86
pita ha ya 33
pita ha ya barbona 35
pita ha ya dulce 33
pita ha ya morada 7
pita ha ya naranjadas 7
pita ha ya orejona 31
pita ha ya rota 93
pittallita 83
pitya 30, 32
pitya agria 87
pitya 33
pitya de mayo 32
plaster 93, 94
p-Methoxyamphetamine 76
pneumonia 97
pneumothorax 87
poison 88, 90, 91
Poisson 1960 66
pokere 84
Polaskia chende
analysis 56
Polaskia chichipe
analysis 56
polyphenolic pigments 48
poly saccharide 45, 51
pomada de peyote 87
polou tice 79, 90, 91, 92
PR 3293 37
pregnancy 91
prisms 57
prom long life 85
Promotes the flow of ch’i 92
Propanolol 84
prophesize 87
Pseudolobivia kermesina 56
psedorabies virus 92
psychoactive 70, 97
Pterocereine 57
structure 162
Pterocereus foetidus 57
Pterocereus gaumeri
analysis 57
pukara 84
pulicide 88
pulse slowed 87
Puna clavarioides 57
purgative 86, 88, 98
Pycnarrhine
structure 162
Pyrrocactus strausianus 57

Q
Quadrone 17
Quercetin 10, 31, 41, 47, 48, 50, 51, 52, 55, 63, 70, 91
3-methyl ether 48
3-O-β-D-galactopyranoside 31
Quercetin-3-galactoside 50
Quercetin-3-glucoside 16, 17, 20, 46, 47, 50, 51
Quercetin 3-methyl ether 47, 91
Quercetin 3-O-rhamnoside 52
Quercetin 3-O-rhamnosylglucoside 20
quercetin 3-O-β-D-glucopyranoside 31
Quercetin-3-rutinoside 16, 17, 46, 47, 50, 51
Quercetin 7-O-glucoside 20
Quercitrin 47
Queretaroic acid 33, 59, 60
structure 168
Queretarol
structure 168
Quinic acid 10, 36, 46, 53, 55, 56

R
rabies 93
rabo de raposa 29
racamatraca 93
radiation burn 90
radical scavengers 91
rainbow cactus 84
Randia echinocarpa 98
Randia laevigata 98
Randia watsoni 98
rat auricles 84
Rat basophilic leukemia 96
Rathbunia alamosensis 57
rat hearts 84
rat invasion 86
rat-tail cactus 7
RBL-2H3 96
reactions of mescaline 25
Rebutia arenacea
analysis 57
Rebutia fabrisii
analysis 57
Rebutia krainziana
analysis 57
Rebutia margarethae 57
analysis 57
Rebutia marsoneri
analysis 57
Rebutia miniscula
analysis 57
Rebutia pseudodeminuta
analysis 57
Rebutia senilis
analysis 57
recreational inebrient 79
reduces plasma glucose 91
red urine 86, 98
References 99
refreshing 79
refreshing tea 90
refrigerant 94
regurgitation 94
reina de noche 93
religious 87
removes toxin 92
respiratory depression 84
respiratory stimulant 87
respiratory syncitial disease virus 92
Retusin 7
revitalizing 94
Rhamnose 9, 16, 19, 45, 47, 48, 61, 75
rheumatism 87, 90, 92, 93, 94
Rhipsalis baccifera
analysis 57
Rhipsalis capilliformis
analysis 57
Rhipsalis cassythia
activity note 94
analysis 57
Rhipsalis conferta
Activity note 57, 94
Rhipsalis gaertneria
analysis 57
Rhipsalis juengleri
analysis 58
Rhipsalis mesembryanthemoides
analysis 58
Rhipsalis pachyptera
activity note 94
Rhipsalis paradoxa
analysis 58
Rhipsalis regnellii
analysis 58
Rhipsalis rhombea
analysis 58
Rhipsalis teres
analysis 58
Rhipsalis virgata
analysis 58
Rhipsalis warmingiana
 analysis 58
rhizosphere 17, 83
Rhodocactus grandifolius
 see as Pereskia grandifolia 55
Rhodocactus sp 58
Rhodoxanthin 50
Rhyrcose 48
Ritterocereus griseus 58
Ritterocereus hystrix 58
Ritterocereus montanus 58
Ritterocereus pruinuosus 58
Ritterocereus queretaroensis 58
Ritterocereus weberi 58
robbers 78, 85
Rooksbya euphorbioides 58
rosapara 85, 87
Roseocactus fissuratus 58
Roseocereus tephrcanthus 58
rubber 52
Rules of Nomenclature, 72
runners 85
Rutin 47, 51, 52

S

sacamatraca 93
Saccharose 15
Sacred Cactus 41
saguaro 9
saguesa 53
sahuarro 9
Salado 83
Salicifoline 77
 structure 157
salmon-flowered hedgehog 84
Salsolidine 10, 45, 53, 54, 10
 structure 160
Salsoline 19, 53
 structure 160
Salsolinol
 structure 160
salve 93
San Pedro 63, 66, 68
Macho 68
 Trichocereus peruvianus 68
San Pedro book 6, 174
San Pedro Substitute 86
Santa Poli 81
sarcoma 45 93
scald 91
Schlumbergera bridgesii
 analysis 58
Schlumbergera russelliana
 analysis 58
Schlumbergera truncata
 analysis 58
Schlumbergera x buckleyi 59
Schottenol 35
sciatica 79
scorpion sting 87
scurvy 79
Selenicereus coniflorus 59
activity note 94
Selenicereus grandiflorus
activity note 94
analysis 59
inexcusable substitute 91
Selenicereus pteranthus
 analysis 59
Selinene 58
senita 35, 86
Seri 79, 86
Serotonin 40
Sesquiterpene alcohol 17, 18, 20, 21, 23, 24, 26,
 54, 57, 73
Sesquiterpene alcohol 1 54
sexual exhaustion 94
shortwindedness 91
silver cholla 16
sina 59
Sinapinic acid 52
Siniscalco 1983 39, 44
sinita 35
Sitosterol 7, 10, 11, 15, 19, 21, 31, 33, 47, 50,
 51, 55, 58
 structure 166
skin ailments 90, 91
sleep 87
smoked 78, 79
snake bite 87, 92, 93
snake repellent 88
snowball pincushion 88
Soehrensia bruchii 59
solid tumor S180 84
Solisia pectinata
 analysis 59
Solisia pseudopectinata 59
sorcerers 85
sores 85, 90, 91, 92, 93, 94
sore throat 92
Spanish Gooseberry 55
spasms 87, 90
speed 85
Spinasterol
 structure 166
Spiroketal 49
star cactus 8
Stearic acid 46, 48, 49
Stellatogenin 45, 60, 61
structure 168
Stellatoside 61
Stellatoside B 60
Stellatoside B methyl ester 60
Stellatoside C 60
Stellatoside C methyl ester 60
Stellatoside D 60
Stellatoside E 60
Stenocactus multicostatus 59
Stenocereol 34
structure 168
Stenocereus alamosensis
analysis 59
Stenocereus beneckei
analysis 59
Stenocereus chende
See as Polaskia chende 60
Stenocereus chichipe 60
Stenocereus dumortieri 60
Stenocereus eruca
activity note 96
analysis 60
Stenocereus griseus 60
Stenocereus gummosus 60
Stenocereus hystrix 60, 86
activity note 86
Stenocereus longispinus 60
Stenocereus marginatus 60
Stenocereus montanus 60
Stenocereus pruinosus 61
Stenocereus queretaroensis 61
Stenocereus quedevonis 61
Stenocereus stellatus
analysis 61
water content 61
Stenocereus thurberi 61
Stenocereus treleasei
analysis 61
Stenocereus weberi 61
sterility 97
steroid 19
sterol 10
Stigmasteryl 31, 55
structure 168
stimulant 85, 96
stimulant activity 68
strawberry cactus 83
Strombocactus disciformis
analysis 61
structural formula key
Isoquinoline
generic diagram 163
key 163
Isoquinolines 160
alphabetical 164
Phenethylamines 156
generic diagram 159
key 159
Triterpenoids 166
generic diagram 169
key 169
structure table
isoquinolines 160
phenethylamines 156
triterpenoids 166
Stuart 79
stupefy fish 87
Styrene 58
suaharo 9
Succinic acid 48, 51
Sucrose 12
sugaro 80
suguarro 9
sunami 78
sunburn 91
sunset cactus 88
sunstroke 87
suppurative 94
suwarro 9
suwarrow 9
swelling 87, 88, 91, 92, 94
reduce 94
swelling of eyelids 79
sympathomimetic 90
Synephrine 14, 15, 16, 17, 18, 41
structure 156
syphilis 92, 94
Syringaldehyde 10
T

taxuá 87
Taraxerol 51, 52
Taraxerone 52
Tartaric acid 48
tasajillo 17
tasajo 31
tasajuilla 83
Taxifolin 47, 48
tchay 79
Tehuanine 53, 54
structure 161
Tehuanine-N-oxide 53
structure 161
<table>
<thead>
<tr>
<th>Compound</th>
<th>Analysis/Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tepenine</td>
<td>analysis 63</td>
</tr>
<tr>
<td>Terpine 47</td>
<td></td>
</tr>
<tr>
<td>Terpenoid summary by species 4</td>
<td></td>
</tr>
<tr>
<td>Terrecyclic acid A 17, 83</td>
<td></td>
</tr>
<tr>
<td>Tesgüino 78, 81, 86, 87, 98</td>
<td></td>
</tr>
<tr>
<td>Tetanic convulsions 84</td>
<td></td>
</tr>
<tr>
<td>Tetracyclic triterpenoid 15</td>
<td></td>
</tr>
<tr>
<td>Tetradecane 58</td>
<td></td>
</tr>
<tr>
<td>Tetramethylated quercetrine 7</td>
<td></td>
</tr>
<tr>
<td>Tetrol 19</td>
<td></td>
</tr>
<tr>
<td>Thelocactus bicolor analysis 61</td>
<td></td>
</tr>
<tr>
<td>Thelocactus pseudopectinatus 62</td>
<td></td>
</tr>
<tr>
<td>Thelocactus sp analysis 62</td>
<td></td>
</tr>
<tr>
<td>Thirst 92</td>
<td></td>
</tr>
<tr>
<td>Throat ailments 91</td>
<td></td>
</tr>
<tr>
<td>Throw down precipice 85</td>
<td></td>
</tr>
<tr>
<td>Thurberin 33</td>
<td></td>
</tr>
<tr>
<td>Thurberogenin 33, 60, 61</td>
<td></td>
</tr>
<tr>
<td>Thurberol 34</td>
<td></td>
</tr>
<tr>
<td>Thuriberoside A 60, 96</td>
<td></td>
</tr>
<tr>
<td>Tobacco toxemia 94</td>
<td></td>
</tr>
<tr>
<td>Todd 1969 39</td>
<td></td>
</tr>
<tr>
<td>Toluene 47</td>
<td></td>
</tr>
<tr>
<td>Tom Juul 67</td>
<td></td>
</tr>
<tr>
<td>Tonic 84, 94</td>
<td></td>
</tr>
<tr>
<td>Too strong 79</td>
<td></td>
</tr>
<tr>
<td>Toothache 90, 91</td>
<td></td>
</tr>
<tr>
<td>Torres & Torres bioassay 70</td>
<td></td>
</tr>
<tr>
<td>Totem pole cactus 35</td>
<td></td>
</tr>
<tr>
<td>Toxemia 94</td>
<td></td>
</tr>
<tr>
<td>Toxicity 85</td>
<td></td>
</tr>
<tr>
<td>Trans-β-Ocimene 23, 24</td>
<td></td>
</tr>
<tr>
<td>Treleasegenic acid 60, 61</td>
<td></td>
</tr>
<tr>
<td>Structure 169</td>
<td></td>
</tr>
<tr>
<td>Treleasides A 60</td>
<td></td>
</tr>
<tr>
<td>Trichocereine 71, 76</td>
<td></td>
</tr>
<tr>
<td>Structure 159</td>
<td></td>
</tr>
<tr>
<td>Trichocereus aff. pachanoi 67</td>
<td></td>
</tr>
<tr>
<td>Trichocereus andalgalensis</td>
<td></td>
</tr>
<tr>
<td>Analysis 62</td>
<td></td>
</tr>
<tr>
<td>Trichocereus argentinensis 12, 62</td>
<td></td>
</tr>
<tr>
<td>Trichocereus atacamensis activity note 96</td>
<td></td>
</tr>
<tr>
<td>Bioassay 62</td>
<td></td>
</tr>
<tr>
<td>Trichocereus bridgesii activity note 96</td>
<td></td>
</tr>
<tr>
<td>Analysis 63 monstrose 63</td>
<td></td>
</tr>
<tr>
<td>Trichocereus bruchii analysis 63</td>
<td></td>
</tr>
<tr>
<td>Trichocereus camaraguensis</td>
<td></td>
</tr>
<tr>
<td>Analysis 63</td>
<td></td>
</tr>
<tr>
<td>Trichocereus candidans analysis 63</td>
<td></td>
</tr>
<tr>
<td>Trichocereus cephalomacroestibas 63, 85</td>
<td>activity note 85</td>
</tr>
<tr>
<td>Trichocereus chalaensis 63</td>
<td></td>
</tr>
<tr>
<td>Trichocereus chilensis</td>
<td></td>
</tr>
<tr>
<td>Analysis 63</td>
<td></td>
</tr>
<tr>
<td>Trichocereus chiloensis 63</td>
<td></td>
</tr>
<tr>
<td>Activity note 96</td>
<td></td>
</tr>
<tr>
<td>Trichocereus courantii</td>
<td></td>
</tr>
<tr>
<td>Analysis 64</td>
<td></td>
</tr>
<tr>
<td>Trichocereus crassicostata 64</td>
<td></td>
</tr>
<tr>
<td>Trichocereus cuzcoensis activity note 97</td>
<td>analysis 64</td>
</tr>
<tr>
<td>Not 97</td>
<td></td>
</tr>
<tr>
<td>Trichocereus cv Juulís Giant 67</td>
<td></td>
</tr>
<tr>
<td>Trichocereus fulvilanus analysis 64</td>
<td></td>
</tr>
<tr>
<td>Trichocereus giganteus 11</td>
<td></td>
</tr>
<tr>
<td>Trichocereus grandiflorus 64</td>
<td></td>
</tr>
<tr>
<td>Analysis 64</td>
<td></td>
</tr>
<tr>
<td>Tryptamine question 64</td>
<td></td>
</tr>
<tr>
<td>Trichocereus huallanca activity note 97</td>
<td>cutting 97</td>
</tr>
<tr>
<td>Not 97</td>
<td></td>
</tr>
<tr>
<td>Trichocereus huanucoensis bioassay 64</td>
<td></td>
</tr>
<tr>
<td>Trichocereus huasca analysis 64</td>
<td></td>
</tr>
<tr>
<td>Trichocereus huayanca 97</td>
<td></td>
</tr>
<tr>
<td>Trichocereus knuthianus</td>
<td></td>
</tr>
<tr>
<td>Analysis 65</td>
<td></td>
</tr>
<tr>
<td>Trichocereus lamprochlorus</td>
<td></td>
</tr>
<tr>
<td>Analysis 65</td>
<td></td>
</tr>
<tr>
<td>Trichocereus lobivioides grandiflorus 65</td>
<td></td>
</tr>
<tr>
<td>Trichocereus macrogonus</td>
<td></td>
</tr>
<tr>
<td>Analysis 65</td>
<td></td>
</tr>
<tr>
<td>Subsp. pachanoi 66</td>
<td></td>
</tr>
<tr>
<td>Trichocereus manguinii</td>
<td></td>
</tr>
<tr>
<td>Analysis 65</td>
<td></td>
</tr>
<tr>
<td>Trichocereus pachanoi activity note 97</td>
<td>analysis 66</td>
</tr>
<tr>
<td>Water content 66</td>
<td></td>
</tr>
</tbody>
</table>

152
Trichocereus pallarensis 68
Trichocereus pasacana
analysis 68
bioassay 68
Trichocereus peruvianoids 68
Trichocereus peruvianus
analysis 68
Chavin de Huantar 69
Huancabamba 67
KK242
analysis 69
KK242 Matucana 69
trujilloensis 68
var. knuthianus 65
water content 68
Trichocereus poco
analysis 69
Trichocereus puquiensis 69
monstrose
bioassay 69
Trichocereus purpureopilosus
analysis 69
Trichocereus santaensis 69
Trichocereus santiaguensis 69
analysis 69
Trichocereus schickendantzii
analysis 69
Trichocereus schoenii
activity note 97
analysis 70
Trichocereus scopulicola
activity note 97
Trichocereus scopulicolus 70
Trichocereus skottsbergii
analysis 70
Trichocereus smrzianus
bioassay 70
Trichocereus sp
N. Chile
bioassay 70
SS02
bioassay 70
Trichocereus spachianus
activity note 97
analysis 70
Trichocereus strigosus 70
Trichocereus taquimbalensis 70
activity note 97
analysis 70
Trichocereus terscheckii
analysis 71
Trichocereus thelegonoides
analysis 71
Trichocereus thelegonus
analysis 71
Trichocereus torataensis 71
Trichocereus talhuayacensis 71
activity note 97
Trichocereus tunariensis
analysis 71
Trichocereus validus 71
analysis 71
Trichocereus volcanensis 71
Trichocereus vollianus
analysis 71
Trichocereus werdermannianus
analysis 71
Tridecan-2-one 58
Trimethylcitrate 48
triterpene summary
by species 4
triterpenoids
key to structure table 169
structural table 166
structure table 166
Triterpenol 15
Tryptamine 20, 40, 77
tsuwíri 79
tuberculosis 87, 92
tulip prickly pear 91
tumor growth inhibition 84
tumors 90, 91, 92, 93, 94, 96
tuna 61, 90
tuna mansa 90
Tunilla soehrensii 72
tunillo 61
Turbinicarpus
comments 72
Turbinicarpus alonzo
analysis 72
Turbinicarpus bonatzii 72
Turbinicarpus dickisoniae 72
analysis 74
Turbinicarpus flaviflorus 72
analysis 74
Turbinicarpus gracilis 72
analysis 74
Turbinicarpus hoferi 72
Turbinicarpus jauernigii 72
Turbinicarpus klinkerianus 72
analysis 74
Turbinicarpus krainzianus 72
var. minimus 72
Turbinicarpus laui 72
Turbinicarpus lausseri 72
Turbinicarpus lilinkeudus 72
Turbinicarpus lophophoroides
analysis 72
ssp. jauernigii 73
Turbinicarpus macrochele 73
 analysis 74
 ssp. macrochele
 var. polaskii 73
 var. schwarzi
 f. polaskii 73
 Turbinicarpus panarito 73
 Turbinicarpus polaskii 73
 analysis 74
 Turbinicarpus pseudomacrochele
 analysis 73
 ssp. krainzianus
 analysis 73
 Turbinicarpus pseudopectinatus
 analysis 73
 Turbinicarpus roseiflorus 73
 Turbinicarpus schmiediacceanus
 analysis 73
 f. polaskii
 analysis 74
 ssp. dickisoniae
 analysis 74
 ssp. flaviflorus
 analysis 74
 ssp. klinkeranus
 f. schwarzi
 ssp. klinkerianus
 analysis 74
 ssp. macrochele
 analysis 74
 ssp. rubriflorus 74
 ssp. schwarzi
 analysis 74
 f. rubriflorus
 75
 ssp. schwarzi f. rubriflorus
 analysis 75
 Turbinicarpus schwarzi 75
 analysis 74
 f. rubriflorus
 analysis 75
 Turbinicarpus swobodae 75
 Turbinicarpus valdezi anus 75
 Tyramine 8, 11, 12, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 36, 37, 38, 40, 41, 43, 44, 46, 47, 54, 55, 56, 59, 61, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76
 structure 156
 Tyrosine 11, 52

U

Uberine 18
structure 160

Ubine 18
structure 156
ulcers 90, 92, 93, 94
Undatuside A 31
Undatuside B 31
Undatuside C 31
Undecan-2-one 58
unidentified
alcohol 64
alkaloid 7, 8, 15, 16, 17, 18, 19, 20, 22, 33,
34, 35, 36, 42, 43, 45, 46, 47, 48, 50, 51,
53, 55, 57, 58, 59, 61, 63
amine 58
bases 13, 28
imidazole 18
lactone 32
lactone-forming acid 47
quaternary alkaloid 16, 19
terpene 32
triterpene 11, 52, 68
triterpene lactone 21
waxy solid 68
urine
red like blood 86, 98
useful trivia 5
UV 50

V

valvular disease 94
Van Geest 68
Vanillic acid 10, 50, 51
Vanillin 10, 50
venereal ailments 87
vermifuge 85
vichishovo 45
Viesca/ Vieska 38
Vitalis 80
Vitexin 52
viznaga 19
volatile compounds 47
volatiles 12
Vulgaxanthin I 59

W

wallflower-crown 57
wamapanako 84
warts 88, 90, 91
water content 7, 13, 20, 25, 32, 33, 34, 35, 38,
44, 45, 47, 51, 54, 61, 66, 68, 71
water purification 94
W. Baker 5452
bioassay 63
weakness 94
Weberbaurocereus acranthus 85
 activity note 85
Weberbaurocereus cephalomacrocostibas
 activity note 85
Weberidine 53, 54
 structure 160
Weberine 53, 54
 structure 163
Weddellite 13, 19, 24, 45, 57, 75
 formula 173
Whewellite 16, 47, 50, 57
 formula 173
white torch 70
wichowaka 92
wichowáka 92
wichuri 81, 83
Wigginsia arechavaletai
 analysis 75
Wigginsia macrocantha
 analysis 75
Wigginsia tephraecantha
 analysis 75
Wilcoxia striata
 activity note 93
 see as Peniocereus striatus 93
women's ailments 85, 90, 91
wounds 78, 84, 86, 87, 90, 91, 92, 93

X
Xanthophyll 50
Xian Ren Zhang 51
XO activity
 inhibits 91
xoconostle 50
Xylose 9, 10, 16, 45, 46, 47, 48, 61, 75

Y
yellow fever 94

Z
Z-2-Hexen-1-ol 49
Z-2-Pentene-1-ol 49
Z-3-Hexen-1-ol 49
Z-3-Hexenal 49
zacoub 31
Zeylmaker #8504 46
Zeylmaker #8508 46
zina 35
Zinc 48
Zygocactus truncatus 58
Cactus Phenethylamines: A Tabular Key to their Structural Formulas

<table>
<thead>
<tr>
<th>Compound</th>
<th>Position:</th>
<th>Phenyl</th>
<th>Ethyl</th>
<th>Amine</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenethylamine</td>
<td></td>
<td>2 H</td>
<td>3 H</td>
<td>4 H</td>
<td>5 H</td>
</tr>
<tr>
<td>Amphetamine*</td>
<td></td>
<td>2 H</td>
<td>3 H</td>
<td>4 H</td>
<td>5 H</td>
</tr>
<tr>
<td>N-Methylphenethylamine</td>
<td></td>
<td>2 H</td>
<td>3 H</td>
<td>4 H</td>
<td>5 H</td>
</tr>
<tr>
<td>Methamphetamine*</td>
<td></td>
<td>2 H</td>
<td>3 H</td>
<td>4 H</td>
<td>5 H</td>
</tr>
<tr>
<td>N,N-Dimethylphenethylamine</td>
<td>15 H</td>
<td>16 H</td>
<td>17 H</td>
<td>18 H</td>
<td>19 H</td>
</tr>
<tr>
<td>Ubine</td>
<td>27 H</td>
<td>28 H</td>
<td>29 H</td>
<td>30 H</td>
<td>31 H</td>
</tr>
<tr>
<td>Coryphanthine</td>
<td>39 H</td>
<td>40 H</td>
<td>41 H</td>
<td>42 H</td>
<td>43 H</td>
</tr>
<tr>
<td>Tyramine</td>
<td>51 H</td>
<td>52 H</td>
<td>53 HO</td>
<td>54 H</td>
<td>55 H</td>
</tr>
<tr>
<td>Octopamine</td>
<td>63 H</td>
<td>64 H</td>
<td>65 HO</td>
<td>66 H</td>
<td>67 H</td>
</tr>
<tr>
<td>N-Methyltyramine</td>
<td>75 H</td>
<td>76 H</td>
<td>77 HO</td>
<td>78 H</td>
<td>79 H</td>
</tr>
<tr>
<td>Synephrine</td>
<td>87 H</td>
<td>88 H</td>
<td>89 HO</td>
<td>90 H</td>
<td>91 H</td>
</tr>
<tr>
<td>β-O-Methylsynephrine</td>
<td>99 H</td>
<td>100 H</td>
<td>101 HO</td>
<td>102 H</td>
<td>103 H</td>
</tr>
<tr>
<td>β-O-Ethylsynephrine</td>
<td>111 H</td>
<td>112 H</td>
<td>113 HO</td>
<td>114 H</td>
<td>115 H</td>
</tr>
<tr>
<td>Hordenine</td>
<td>123 H</td>
<td>124 H</td>
<td>125 HO</td>
<td>126 H</td>
<td>127 H</td>
</tr>
<tr>
<td>Candicine</td>
<td>135 H</td>
<td>136 H</td>
<td>137 HO</td>
<td>138 H</td>
<td>139 H</td>
</tr>
<tr>
<td>4-Methoxyphenethylamine</td>
<td>147 H</td>
<td>148 H</td>
<td>149 MeO</td>
<td>150 H</td>
<td>151 H</td>
</tr>
<tr>
<td>4-Methoxy-β-hydroxyphenethylamine</td>
<td>159 H</td>
<td>160 H</td>
<td>161 MeO</td>
<td>162 H</td>
<td>163 H</td>
</tr>
<tr>
<td>N-Methyl-4-methoxyphenethylamine</td>
<td>171 H</td>
<td>172 H</td>
<td>173 MeO</td>
<td>174 H</td>
<td>175 H</td>
</tr>
<tr>
<td>Longimammine</td>
<td>183 H</td>
<td>184 H</td>
<td>185 MeO</td>
<td>186 H</td>
<td>187 H</td>
</tr>
<tr>
<td>N,N-Dimethyl-4-methoxyphenethylamine</td>
<td>195 H</td>
<td>196 H</td>
<td>197 MeO</td>
<td>198 H</td>
<td>199 H</td>
</tr>
<tr>
<td>N,N-Dimethyl-4-methoxy-β-hydroxyphenethylamine</td>
<td>207 H</td>
<td>208 H</td>
<td>209 MeO</td>
<td>210 H</td>
<td>211 H</td>
</tr>
<tr>
<td>O-Methyl-candicine</td>
<td>219 H</td>
<td>220 H</td>
<td>221 MeO</td>
<td>222 H</td>
<td>223 H</td>
</tr>
</tbody>
</table>

* Not reported as a cactus alkaloid; included for structural comparison
PEA cont.

Position: 2 3 4 5 6

<table>
<thead>
<tr>
<th>Compound</th>
<th>Phenyl</th>
<th>Ethyl</th>
<th>Amine</th>
<th>Na</th>
<th>Me</th>
<th>Me+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dopamine</td>
<td>H</td>
<td>HO</td>
<td>HO</td>
<td>H</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>Norepinephrine</td>
<td>H</td>
<td>HO</td>
<td>HO</td>
<td>H</td>
<td>H</td>
<td>HO</td>
</tr>
<tr>
<td>Epinine</td>
<td>H</td>
<td>HO</td>
<td>HO</td>
<td>H</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>Epinephrine</td>
<td>H</td>
<td>HO</td>
<td>HO</td>
<td>H</td>
<td>H</td>
<td>HO</td>
</tr>
<tr>
<td>N-Methyladrenaline</td>
<td>H</td>
<td>HO</td>
<td>HO</td>
<td>H</td>
<td>H</td>
<td>HO</td>
</tr>
<tr>
<td>Coryneine</td>
<td>H</td>
<td>HO</td>
<td>HO</td>
<td>H</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>3-Hydroxy-4-methoxyphenethylamine</td>
<td>H</td>
<td>HO</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>3-Methoxytyramine</td>
<td>H</td>
<td>MeO</td>
<td>HO</td>
<td>H</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>Normetanephrine</td>
<td>H</td>
<td>MeO</td>
<td>HO</td>
<td>H</td>
<td>H</td>
<td>HO</td>
</tr>
<tr>
<td>N-Methyl-3-methoxytyramine</td>
<td>H</td>
<td>MeO</td>
<td>HO</td>
<td>H</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>Metanephrine</td>
<td>H</td>
<td>MeO</td>
<td>HO</td>
<td>H</td>
<td>H</td>
<td>HO</td>
</tr>
<tr>
<td>NAMT</td>
<td>H</td>
<td>MeO</td>
<td>HO</td>
<td>H</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>N,N-Dimethyl-3-methoxytyramine</td>
<td>H</td>
<td>MeO</td>
<td>HO</td>
<td>H</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>Salicifoline*</td>
<td>H</td>
<td>MeO</td>
<td>HO</td>
<td>H</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>N-Methylmetanephrine</td>
<td>H</td>
<td>MeO</td>
<td>HO</td>
<td>H</td>
<td>H</td>
<td>HO</td>
</tr>
<tr>
<td>3,4-Dimethoxyphenethylamine</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>3,4-Dimethoxy-β-hydroxyphenethylamine</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>HO</td>
</tr>
<tr>
<td>3,4-Dimethoxy-N-methylphenethylamine</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>HO</td>
</tr>
<tr>
<td>Normacromerine</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>HO</td>
</tr>
<tr>
<td>Calipamine</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>MeO</td>
</tr>
<tr>
<td>N-Acetyl DMPEA</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>C(O)Me</td>
</tr>
</tbody>
</table>

* Not reported as a cactus alkaloid; included for structural comparison
Structural tables: Phenethylamines

<table>
<thead>
<tr>
<th>Compound</th>
<th>Position: 2</th>
<th>Phenyl</th>
<th>Ethyl</th>
<th>Amine</th>
<th>N1</th>
<th>N2</th>
<th>N3+</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,4-Dimethoxy-N,N-dimethylphenethylamine</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Macromerine</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>HO</td>
<td>na</td>
</tr>
<tr>
<td>β-Methoxy-3,4-dimethoxy-N,N-dimethylphenethylamine</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>MeO</td>
<td>na</td>
</tr>
<tr>
<td>3-Nitrotyramine</td>
<td>H</td>
<td>NO2</td>
<td>HO</td>
<td>H</td>
<td>H</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>3,4,5-Trihydroxyphenethylamine*</td>
<td>H</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>3,4-Dihydroxy-5-methoxyphenethylamine</td>
<td>H</td>
<td>HO</td>
<td>HO</td>
<td>MeO</td>
<td>H</td>
<td>na</td>
<td>H</td>
</tr>
<tr>
<td>3-Hydroxy-4,5-dimethoxyphenethylamine</td>
<td>H</td>
<td>HO</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>na</td>
<td>H</td>
</tr>
<tr>
<td>N-Methyl-3-hydroxy-4,5-dimethoxyphenethylamine</td>
<td>H</td>
<td>HO</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>na</td>
<td>Me</td>
</tr>
<tr>
<td>N-Formyl-3-hydroxy-4,5-dimethoxyphenethylamine</td>
<td>H</td>
<td>HO</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>na</td>
<td>C(O)H</td>
</tr>
<tr>
<td>N-Acetyl-3-hydroxy-4,5-dimethoxyphenethylamine</td>
<td>H</td>
<td>HO</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>na</td>
<td>C(O)Me</td>
</tr>
<tr>
<td>N,N-Dimethyl-3-hydroxy-4,5-dimethoxyphenethylamine</td>
<td>H</td>
<td>HO</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>na</td>
<td>Me</td>
</tr>
<tr>
<td>4-Hydroxy-3,5-dimethoxyphenethylamine</td>
<td>H</td>
<td>MeO</td>
<td>HO</td>
<td>MeO</td>
<td>H</td>
<td>na</td>
<td>H</td>
</tr>
<tr>
<td>Mescaline</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>na</td>
<td>H</td>
</tr>
<tr>
<td>N-Methylmescaline</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>na</td>
<td>Me</td>
</tr>
<tr>
<td>N-Formylmescaline</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>na</td>
<td>C(O)H</td>
</tr>
</tbody>
</table>

* Not reported as a cactus alkaloid; included for structural comparison
Trouts Notes on Cactus Chemistry

<table>
<thead>
<tr>
<th>Compound</th>
<th>Position:</th>
<th>Phenyl</th>
<th>Ethyl</th>
<th>Amine</th>
<th>N1</th>
<th>N2</th>
<th>N3+</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-Acetylmescaline</td>
<td></td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>β-Hydroxy-mescaline</td>
<td></td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>HO</td>
<td>na</td>
</tr>
<tr>
<td>Trichocereine</td>
<td></td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>3,4,5-Trimethoxyphenylalanine*</td>
<td></td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>na</td>
<td>-CO₂H</td>
</tr>
<tr>
<td>2-Chloro-mescaline**</td>
<td>Cl</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>na</td>
<td>H</td>
</tr>
<tr>
<td>2,6-Dichloro-mescaline*</td>
<td>Cl</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>Cl</td>
<td>na</td>
<td>H</td>
</tr>
</tbody>
</table>

* Not reported as a cactus alkaloid; included for structural comparison
** Believed to be extraction artifact

Generic structural diagram for phenethylamine table

![Generic structural diagram](image)

Phenethylamine Key:

Abbreviations

- α: Carbon adjacent to the nitrogen.
- β: Carbon adjacent to the phenyl ring.
- Cl: Chlorine
- C(O)H: Formyl
- C(O)Me: Acetyl
- CO₂H: COOH: Carbonyl
- EtO: Ethoxy
- H: Hydrogen
- HO: Hydroxy
- Me: Methyl
- Me+: Methyl cation
- MeO: Methoxy
- na: Not applicable.
- NO₂: Nitrate
- PEA: Phenethylamine

![Structure of Lemairin](image)
<table>
<thead>
<tr>
<th>Compound</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R1</th>
<th>R2a</th>
<th>R2b</th>
<th>R4</th>
<th>unsat</th>
</tr>
</thead>
<tbody>
<tr>
<td>mono-ring-sub</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Longimammatine</td>
<td>H</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>na</td>
<td>H</td>
</tr>
<tr>
<td>2. Weberidine</td>
<td>H</td>
<td>H</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>na</td>
<td>H</td>
</tr>
<tr>
<td>3. Longimammosine</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Me</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>4. Longimammidine</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>Me</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>5. ?-Mono-MeO-1-Me-THIQ (MIKES)</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>na</td>
<td>H</td>
</tr>
<tr>
<td>6. Longimammamine</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>Me</td>
<td>na</td>
<td>OH</td>
<td>na</td>
</tr>
<tr>
<td>7. Arizonine</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>MeO</td>
<td>OH</td>
<td>H</td>
<td>Me</td>
<td>na</td>
<td>H</td>
</tr>
<tr>
<td>di-ring-sub</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Heliamine</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>na</td>
<td>H</td>
</tr>
<tr>
<td>9. Dehydroheliamine</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>na</td>
<td>H</td>
</tr>
<tr>
<td>10. Backebergine</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>na</td>
<td>H</td>
</tr>
<tr>
<td>11. Lemaireocereine</td>
<td>H</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>na</td>
<td>H</td>
</tr>
<tr>
<td>12. Dehydrolemaireocereine</td>
<td>H</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>na</td>
<td>H</td>
</tr>
<tr>
<td>13. Isobackebergine</td>
<td>H</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>na</td>
<td>H</td>
</tr>
<tr>
<td>14. Uberine</td>
<td>MeO</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>Me</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>15. Corypalline</td>
<td>H</td>
<td>MeO</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>Me</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>16. Salsolinol*</td>
<td>H</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>Me</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>17. Salsoline</td>
<td>H</td>
<td>OH</td>
<td>MeO</td>
<td>H</td>
<td>Me</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>18. Isosalsonine</td>
<td>H</td>
<td>MeO</td>
<td>OH</td>
<td>H</td>
<td>Me</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>19. Salssolidine</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>Me</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>20. Dehydrosalsolidine</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>Me</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>1,2</td>
</tr>
</tbody>
</table>

* Not reported as a cactus alkaloid; included for structural comparison

160
<table>
<thead>
<tr>
<th>Isoquinoline cont.</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R1</th>
<th>R2a</th>
<th>R2b</th>
<th>R4</th>
<th>unsat</th>
</tr>
</thead>
<tbody>
<tr>
<td>21. N-Methylheliamine (O-Methyl-corypalline)</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>Me</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>23. N-Methylisosalsoline</td>
<td>H</td>
<td>MeO</td>
<td>OH</td>
<td>H</td>
<td>Me</td>
<td>Me</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>24. Lophocereine</td>
<td>H</td>
<td>MeO</td>
<td>OH</td>
<td>H</td>
<td>i-butyl</td>
<td>Me</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>25. Carnegine</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>Me</td>
<td>Me</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>26. Tepenine</td>
<td>H</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>Me</td>
<td>Me</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>27. Calycotomine*</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>-MeOH</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>28. Isosalsolidine</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>Me</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>1,2</td>
</tr>
<tr>
<td>* Not reported as a cactus alkaloid; included for structural comparison</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29. Dehydrosalsolidine</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>Me</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>1,2</td>
</tr>
<tr>
<td>30. Hydrocotarnine</td>
<td>–O–Me–O–</td>
<td>MeO</td>
<td>Me</td>
<td>Me</td>
<td>na</td>
<td>H</td>
<td>na</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31. Anhalamine</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>32. Isoanhalamine</td>
<td>H</td>
<td>OH</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>33. Anhalinine</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>34. Nortehuanine</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>35. Anhalidine</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>OH</td>
<td>H</td>
<td>Me</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>36. Isoanhalidine</td>
<td>H</td>
<td>OH</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>Me</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>37. Anhalonine</td>
<td>H</td>
<td>MeO</td>
<td>–O–Me–O–</td>
<td>Me</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>38. Anhalonidine</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>39. Iso-anhalonidine</td>
<td>H</td>
<td>OH</td>
<td>MeO</td>
<td>MeO</td>
<td>Me</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>40. Lophophorine</td>
<td>H</td>
<td>MeO</td>
<td>–O–Me–O–</td>
<td>Me</td>
<td>Me</td>
<td>na</td>
<td>H</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>41. O-Methyl-anhalonidine</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>Me</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>42. Tehuanine</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>Me</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>43. Tehuanine-N-oxide</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>Me</td>
<td>®O</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>44. Gigantine</td>
<td>Me</td>
<td>Me</td>
<td>Me</td>
<td>na</td>
<td>na</td>
<td>H</td>
<td>OH</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Incorrect proposal</td>
<td>OH</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>Me</td>
</tr>
<tr>
<td>45. Pellotine</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>OH</td>
<td>Me</td>
<td>Me</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>46. Isopellotine</td>
<td>H</td>
<td>OH</td>
<td>MeO</td>
<td>MeO</td>
<td>Me</td>
<td>Me</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>Isoquinoline cont.</td>
<td>R5</td>
<td>R6</td>
<td>R7</td>
<td>R8</td>
<td>R1</td>
<td>R2a</td>
<td>R2b</td>
<td>R4</td>
<td>unsat</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>-------</td>
</tr>
<tr>
<td>tri-ring-sub cont.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47. O-Methylpellotine</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>Me</td>
<td>Me</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>48. Pterocereine</td>
<td>glucose–O–</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>-MeOH</td>
<td>Me</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>49. Deglucopterocereine</td>
<td>OH</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>-MeOH</td>
<td>Me</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>50. Deglucopterocereine-N-oxide</td>
<td>OH</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>-MeOH</td>
<td>Me</td>
<td>®O</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>51. Anhalotine (Iodide)</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>OH</td>
<td>H</td>
<td>Me</td>
<td>I</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>52. Lophotine (Iodide)</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>–O–Me–O–</td>
<td>Me</td>
<td>Me</td>
<td>I</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>53. Peyotine (Iodide)</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>Me</td>
<td>Me</td>
<td>I</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>54. 3,4-Dihydro-6,7-diMeO-8-OH-IQ</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>1,2</td>
</tr>
<tr>
<td>55. 3,4-Dihydro-6,7-diMeO-8-OH-2-Me-isooquinolinium inner salt</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>O'</td>
<td>H</td>
<td>Me'</td>
<td>na</td>
<td>H</td>
<td>1,2</td>
</tr>
<tr>
<td>56. 3,4-Dihydro-6,7-diMeO-8-OH-1-Me-isooquinoline</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>1,2</td>
</tr>
<tr>
<td>57. 3,4-Dihydro-6,7-diMeO-8-OH-1,2-diMe-isooquinolinium inner salt</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>O'</td>
<td>Me</td>
<td>Me'</td>
<td>na</td>
<td>H</td>
<td>1,2</td>
</tr>
<tr>
<td>58. Pycnarrhine*</td>
<td>H</td>
<td>MeO</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>Me'OH'</td>
<td>na</td>
<td>H</td>
<td>1,2</td>
</tr>
<tr>
<td>59. N-Methyl-6,7-dimethoxy-isooquinolinium chloride*</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>Me'Cl'</td>
<td>na</td>
<td>H</td>
<td>1,2</td>
</tr>
<tr>
<td>60. Peyoglutam</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>OH</td>
<td>–CH₂-CH₂-C(O)–</td>
<td>na</td>
<td>H</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>61. Mescalotam</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>–CH₂-CH₂-C(O)–</td>
<td>na</td>
<td>H</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>62. Peyoxylic acid</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>OH</td>
<td>–CO₂H</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>63. O-Methyl-peyoxylic acid</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>–CO₂H</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>64. Peyoruvic acid</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>OH</td>
<td>–Me–CO₂H</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>65. O-Methylpeyoruvic acid</td>
<td>H</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>–Me–CO₂H</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>66. Isonortehuanine</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>1,2</td>
</tr>
<tr>
<td>67. Dehydronortehuanine</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>1,2</td>
</tr>
<tr>
<td>68. Peyophorine</td>
<td>H</td>
<td>MeO</td>
<td>–O–Me–O–</td>
<td>Me</td>
<td>Et</td>
<td>na</td>
<td>H</td>
<td>na</td>
<td></td>
</tr>
</tbody>
</table>

* Not reported as a cactus alkaloid; included for structural comparison
<table>
<thead>
<tr>
<th>Isoquinoline cont.</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R1</th>
<th>R2a</th>
<th>R2b</th>
<th>R4</th>
<th>unsat</th>
</tr>
</thead>
<tbody>
<tr>
<td>R5</td>
<td>R6</td>
<td>R7</td>
<td>R8</td>
<td>R1</td>
<td>R2a</td>
<td>R2b</td>
<td>R4</td>
<td>unsat</td>
<td></td>
</tr>
<tr>
<td>tetra-ring-sub</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69. ?-Mono-OH-tri-MeO-2-Me-THIQ (MIKES) (MeO) & OH (positions?)</td>
<td>H</td>
<td>Me</td>
<td>na</td>
<td>H</td>
<td>1,2</td>
<td></td>
<td></td>
<td>3,4</td>
<td></td>
</tr>
<tr>
<td>70. ?-Tri-MeO-1-Me-1,2,3,4-dehydro-IQ (MIKES) (MeO) (positions?)</td>
<td>Me</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>1,2</td>
<td></td>
<td></td>
<td>3,4</td>
<td></td>
</tr>
<tr>
<td>71. ?-Tri-MeO-1-Me-1,2-dehydro-IQ (MIKES) (MeO) (positions?)</td>
<td>Me</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>1,2</td>
<td></td>
<td></td>
<td>3,4</td>
<td></td>
</tr>
<tr>
<td>72. Norweberine</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>73. Dehydrornorweberine</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>74. Isonorweberine</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>1,2</td>
</tr>
<tr>
<td>75. Pachycereine</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>Me</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>76. Dehydropachycereine</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>Me</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>1,2</td>
</tr>
<tr>
<td>77. Isopachycereine</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>Me</td>
<td>H</td>
<td>na</td>
<td>H</td>
<td>1,2</td>
<td>3,4</td>
</tr>
<tr>
<td>78. Weberine</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>Me</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>79. N-Methylpachycereine trimeric</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>Me</td>
<td>Me</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td>80. Pilocereine</td>
<td>H</td>
<td>MeO</td>
<td>OH</td>
<td>X</td>
<td>i-butyl</td>
<td>Me</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>MeO</td>
<td>XO</td>
<td>Y</td>
<td>i-butyl</td>
<td>Me</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>MeO</td>
<td>YO</td>
<td>H</td>
<td>i-butyl</td>
<td>Me</td>
<td>na</td>
<td>H</td>
<td>na</td>
</tr>
</tbody>
</table>

Generic structural diagram for isoquinoline table

![Isoquinoline structure](image)

Isoquinoline key:

Abbreviations

1,2: 1,2-Dehydro
3,4: 3,4-Dehydro
COH: COOH: Carbonyl
H: Hydrogen
Me: Methyl
MeO: Methoxy

na: Not applicable
OH: Hydroxy
-O-Me-O-: Methyleneoxy
X: Point of attachment (X-X)
Y: Point of attachment (Y-Y)
Structural table Isoquinolines in alphabetical order

<table>
<thead>
<tr>
<th>Name</th>
<th>List #</th>
</tr>
</thead>
<tbody>
<tr>
<td>?-Mono-MeO-1-Methyl-THIQ</td>
<td>5</td>
</tr>
<tr>
<td>?-Mono-OH-tri-MeO-2-Methyl-THIQ</td>
<td>69</td>
</tr>
<tr>
<td>?-Tri-MeO-1-Methyl-1,2,3,4-dehydro-isooquinoline</td>
<td>70</td>
</tr>
<tr>
<td>?-Tri-MeO-1-Methyl-1,2-dehydro-isooquinoline</td>
<td>71</td>
</tr>
<tr>
<td>3,4-Dihydro-6,7-dimethoxy-8-hydroxy-1,2-dimethyl-isooquinolinium inner salt</td>
<td>57</td>
</tr>
<tr>
<td>3,4-Dihydro-6,7-dimethoxy-8-hydroxy-1-methyl-isooquinoline</td>
<td>56</td>
</tr>
<tr>
<td>3,4-Dihydro-6,7-dimethoxy-8-hydroxy-2-methyl-isooquinolinium inner salt</td>
<td>55</td>
</tr>
<tr>
<td>3,4-Dihydro-6,7-dimethoxy-8-hydroxy-isooquinoline</td>
<td>54</td>
</tr>
<tr>
<td>Anhalamine</td>
<td>31</td>
</tr>
<tr>
<td>Anhalamine, Iso-</td>
<td>32</td>
</tr>
<tr>
<td>Anhalidine</td>
<td>35</td>
</tr>
<tr>
<td>Anhalidine, Iso-</td>
<td>36</td>
</tr>
<tr>
<td>Anhalinine</td>
<td>33</td>
</tr>
<tr>
<td>Anhalonidine</td>
<td>38</td>
</tr>
<tr>
<td>Anhalonidine, Iso-</td>
<td>39</td>
</tr>
<tr>
<td>Anhalonidine, O-Methyl-</td>
<td>41</td>
</tr>
<tr>
<td>Anhalonine</td>
<td>37</td>
</tr>
<tr>
<td>Anhalotine (Iodide)</td>
<td>51</td>
</tr>
<tr>
<td>Arizonine</td>
<td>7</td>
</tr>
<tr>
<td>Backebergine</td>
<td>10</td>
</tr>
<tr>
<td>Backebergine, Iso-</td>
<td>13</td>
</tr>
<tr>
<td>Calycotamine</td>
<td>27</td>
</tr>
<tr>
<td>Carnegie</td>
<td>25</td>
</tr>
<tr>
<td>Corypine</td>
<td>15</td>
</tr>
<tr>
<td>Corypine, O-Methyl-</td>
<td>21</td>
</tr>
<tr>
<td>Deglucopterocereine</td>
<td>49</td>
</tr>
<tr>
<td>Deglucopterocereine-N-oxide</td>
<td>50</td>
</tr>
<tr>
<td>Dehydroheliamine</td>
<td>9</td>
</tr>
<tr>
<td>Dehydro-lemaireocereine</td>
<td>12</td>
</tr>
<tr>
<td>Dehydro-nortehuanine</td>
<td>67</td>
</tr>
<tr>
<td>Dehydro-norweberine</td>
<td>73</td>
</tr>
<tr>
<td>Dehydro-pachycereine</td>
<td>76</td>
</tr>
<tr>
<td>Dehydro-salsolidine</td>
<td>20</td>
</tr>
<tr>
<td>Dehydro-salsolidine</td>
<td>29</td>
</tr>
<tr>
<td>Gigantine</td>
<td>44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name (cont.)</th>
<th>List #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heliamine</td>
<td>8</td>
</tr>
<tr>
<td>Heliamine, Dehydro-</td>
<td>9</td>
</tr>
<tr>
<td>Heliamine, N-Methyl-</td>
<td>21</td>
</tr>
<tr>
<td>Hydrocotarnine</td>
<td>30</td>
</tr>
<tr>
<td>Hydrohydrastinidine</td>
<td>22</td>
</tr>
<tr>
<td>Isoanhalamine</td>
<td>32</td>
</tr>
<tr>
<td>Isoanhalidine</td>
<td>36</td>
</tr>
<tr>
<td>Isoanhalonidine</td>
<td>39</td>
</tr>
<tr>
<td>Isoanhalidine, Dehydro-</td>
<td>13</td>
</tr>
<tr>
<td>Isonortehuanine</td>
<td>66</td>
</tr>
<tr>
<td>Isonorweberine</td>
<td>74</td>
</tr>
<tr>
<td>Isopachycereine</td>
<td>77</td>
</tr>
<tr>
<td>Isosalsolidine</td>
<td>28</td>
</tr>
<tr>
<td>Isosalsoline</td>
<td>18</td>
</tr>
<tr>
<td>N-Methyl-isoanhalonidine</td>
<td>41</td>
</tr>
<tr>
<td>IsopPELLotine</td>
<td>46</td>
</tr>
<tr>
<td>Lemaireocereine</td>
<td>11</td>
</tr>
<tr>
<td>Lemaireocereine, Dehydro-</td>
<td>12</td>
</tr>
<tr>
<td>Longimandommine</td>
<td>6</td>
</tr>
<tr>
<td>Longimammatine</td>
<td>1</td>
</tr>
<tr>
<td>Longimammidine</td>
<td>4</td>
</tr>
<tr>
<td>Longimammosine</td>
<td>3</td>
</tr>
<tr>
<td>Lophocereine</td>
<td>24</td>
</tr>
<tr>
<td>Lophophorine</td>
<td>40</td>
</tr>
<tr>
<td>Lophotine (Iodide)</td>
<td>52</td>
</tr>
<tr>
<td>Mescalatam</td>
<td>61</td>
</tr>
<tr>
<td>N-Methyl-6,7-dimethoxy-isoquinolinium chloride</td>
<td>59</td>
</tr>
<tr>
<td>N-Methylheliamine</td>
<td>21</td>
</tr>
<tr>
<td>N-Methylisosalsoline</td>
<td>23</td>
</tr>
<tr>
<td>N-Methyl-pachycereine</td>
<td>79</td>
</tr>
<tr>
<td>Nortehuanine</td>
<td>34</td>
</tr>
<tr>
<td>Nortehuanine, Dehydro-</td>
<td>67</td>
</tr>
<tr>
<td>Nortehuanine, Iso-</td>
<td>66</td>
</tr>
<tr>
<td>Norweberine</td>
<td>72</td>
</tr>
<tr>
<td>Norweberine, Dehydro-</td>
<td>73</td>
</tr>
<tr>
<td>Norweberine, Isonor-</td>
<td>74</td>
</tr>
<tr>
<td>O-Methyl-anhalonidine</td>
<td>41</td>
</tr>
<tr>
<td>O-Methylcorypine</td>
<td>21</td>
</tr>
<tr>
<td>O-Methylpellotine</td>
<td>47</td>
</tr>
<tr>
<td>O-Methylpeyoruvic acid</td>
<td>65</td>
</tr>
<tr>
<td>O-Methylpeyoxylic acid</td>
<td>63</td>
</tr>
<tr>
<td>Pachycereine</td>
<td>75</td>
</tr>
<tr>
<td>Pachycereine, Dehydro-</td>
<td>77</td>
</tr>
<tr>
<td>Pachycereine, Isonor-</td>
<td>79</td>
</tr>
<tr>
<td>Pellotine</td>
<td>45</td>
</tr>
<tr>
<td>Pellotine, Isonor-</td>
<td>46</td>
</tr>
<tr>
<td>Pellotine, O-Methyl-</td>
<td>47</td>
</tr>
<tr>
<td>Peyoglutam</td>
<td>60</td>
</tr>
<tr>
<td>Peyophorine</td>
<td>68</td>
</tr>
<tr>
<td>Peyoruvic acid</td>
<td>64</td>
</tr>
<tr>
<td>Peyoruvic acid, O-Methyl-</td>
<td>65</td>
</tr>
<tr>
<td>Peyotine (Iodide)</td>
<td>53</td>
</tr>
<tr>
<td>Peyoxylic acid</td>
<td>62</td>
</tr>
<tr>
<td>Peyoxylic acid, O-Methyl-</td>
<td>63</td>
</tr>
<tr>
<td>Pilocereine</td>
<td>80</td>
</tr>
<tr>
<td>Pterocereine</td>
<td>48</td>
</tr>
<tr>
<td>Pterocereine, Degluco-</td>
<td>49</td>
</tr>
<tr>
<td>Pycnarrhine</td>
<td>58</td>
</tr>
<tr>
<td>Salsolidine</td>
<td>19</td>
</tr>
<tr>
<td>Salsolidine, Dehydro-</td>
<td>20</td>
</tr>
<tr>
<td>Salsolidine, Dehydro-nor-</td>
<td>29</td>
</tr>
<tr>
<td>Salsolidine, Isonor-</td>
<td>28</td>
</tr>
<tr>
<td>Salsoline</td>
<td>17</td>
</tr>
<tr>
<td>Salsoline, Iso-</td>
<td>18</td>
</tr>
<tr>
<td>Salsoline, N-Methyl-</td>
<td>23</td>
</tr>
<tr>
<td>Salsolinol</td>
<td>16</td>
</tr>
<tr>
<td>Tehuanine</td>
<td>42</td>
</tr>
<tr>
<td>Tehuanine, Dehydronor-</td>
<td>67</td>
</tr>
<tr>
<td>Tehuanine, Isonor-</td>
<td>66</td>
</tr>
<tr>
<td>Tehuanine, Nor-</td>
<td>34</td>
</tr>
<tr>
<td>Tehuanine-N-oxide</td>
<td>43</td>
</tr>
<tr>
<td>Tepenine</td>
<td>26</td>
</tr>
<tr>
<td>Uberine</td>
<td>14</td>
</tr>
<tr>
<td>Weberidine</td>
<td>2</td>
</tr>
<tr>
<td>Weberine</td>
<td>78</td>
</tr>
<tr>
<td>Weberine, Dehydro-nor-</td>
<td>73</td>
</tr>
<tr>
<td>Weberine, Isonor-</td>
<td>74</td>
</tr>
<tr>
<td>Weberine, Nor-</td>
<td>72</td>
</tr>
</tbody>
</table>
Mescaline Krebs acid conjugates & other compounds:

Peyonine and Peyoglunal are pyrrole derivatives rather than Krebs cycle conjugates; they are included on this page only for convenience.

Peyonine and Peyoglunal are pyrrole derivatives rather than Krebs cycle conjugates; they are included on this page only for convenience.

The remaining Krebs acid conjugates include Peyoxylic acid, O-Methylpeyoxylic acid, Peyoruvic acid & O-Methylpeyoruvic acid. These are included in the tables above.
Some Cactus Triterpenoids, Sterols & Similar Molecules

A Tabular Key to their Structural Formulas

(The following includes several related compounds that do not occur in cacti; these are included for comparative purposes)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ring</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-Amyrin</td>
<td>C</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>α-Sitosterol C8=C9</td>
<td>B</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>Et</td>
<td>Me</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>β-Sitosterol C5=C6</td>
<td>B</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Et</td>
<td>Me</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>α-Spinasterol C7=C8 C22=C23</td>
<td>B</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Et</td>
<td>Me</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>3-β-Hydroxy-11α,12α-epoxyolean-28,13β-olide C11-O-C12</td>
<td>C11-O-C12</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>-O-C(O)-</td>
<td>H</td>
<td>H</td>
<td>CH₂OH</td>
<td>Me</td>
</tr>
<tr>
<td>Alamosenogenin</td>
<td>C</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>CHO</td>
<td>H</td>
<td>H</td>
<td>CH₂OH</td>
</tr>
<tr>
<td>Betulin</td>
<td>A</td>
<td>OH</td>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td>CH₂OH</td>
<td>H</td>
<td>H</td>
<td>=CH₂</td>
<td>H</td>
</tr>
<tr>
<td>Betulinic acid</td>
<td>A</td>
<td>OH</td>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td>CO₂H</td>
<td>H</td>
<td>H</td>
<td>=CH₂</td>
<td>H</td>
</tr>
<tr>
<td>Bridgesigenin A</td>
<td>C</td>
<td>OH</td>
<td>Me</td>
<td>-O-C(O)-</td>
<td>H</td>
<td>H</td>
<td>(from R3)</td>
<td>H</td>
<td>H</td>
<td>CH₂OH</td>
</tr>
<tr>
<td>Bridgesigenin B</td>
<td>C</td>
<td>OH</td>
<td>Me</td>
<td>-O-C(O)-</td>
<td>H</td>
<td>H</td>
<td>(from R3)</td>
<td>H</td>
<td>OH</td>
<td>CH₂OH</td>
</tr>
<tr>
<td>Bridgesigenin C</td>
<td>C</td>
<td>OH</td>
<td>Me</td>
<td>-O-C(O)-</td>
<td>H</td>
<td>H</td>
<td>(from R3)</td>
<td>H</td>
<td>OH</td>
<td>AcO</td>
</tr>
<tr>
<td>Calenduladiol acc. to KIRCHER 1980</td>
<td>A</td>
<td>OH</td>
<td>Me</td>
<td>Me</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>=CH₂</td>
<td>H</td>
</tr>
<tr>
<td>Calenduladiol acc. to KASPRZYK et al 1970</td>
<td>A</td>
<td>OH</td>
<td>Me</td>
<td>Me</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>=CH₂</td>
<td>OH</td>
</tr>
<tr>
<td>Campesterol C5=C6</td>
<td>B</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>Me</td>
<td>Me</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Chichipegenin</td>
<td>C</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td>OH</td>
<td>CH₂OH</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>Me</td>
</tr>
<tr>
<td>Cholestane (all saturated)</td>
<td>B</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Me</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Cholestanol (all saturated)</td>
<td>B</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Me</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Cholesterol C5=C6</td>
<td>B</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Me</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Cochalic acid</td>
<td>C</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td>OH</td>
<td>CO₂H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Me</td>
</tr>
<tr>
<td>Compound</td>
<td>Ring</td>
<td>R1</td>
<td>R2</td>
<td>R3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclostenol</td>
<td>B</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(all saturated)</td>
<td></td>
</tr>
<tr>
<td>Dumortierigenin</td>
<td>C</td>
<td>OH</td>
<td>Me</td>
<td>-O-C(O)-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(to R5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Epithelanthate</td>
<td>D</td>
<td>OH</td>
<td>Me</td>
<td>na</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>na</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erynginol A</td>
<td>C</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CH₂OH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erythrodiol</td>
<td>C</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CH₂OH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friedelan-3α-ol</td>
<td>C</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Me</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friedelin</td>
<td>C</td>
<td>=O</td>
<td>Me</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Me</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gummosogenin</td>
<td>C</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CHO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longispinogenin</td>
<td>C</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CH₂OH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lophenol 7=8</td>
<td>B</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Me</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>na</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>na</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>na</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lupenetriol</td>
<td>A</td>
<td>OH</td>
<td>Me</td>
<td>Me</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CH₂OH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lupeol</td>
<td>A</td>
<td>OH</td>
<td>Me</td>
<td>Me</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Me</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macdougallin 8=9</td>
<td>B</td>
<td>OH</td>
<td>Me</td>
<td>OH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Me</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Me</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>na</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>na</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>na</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machaeric acid</td>
<td>C</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO₂H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machaerinic acid</td>
<td>C</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO₂H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machaerogenin 12=13</td>
<td>C</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO₂H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(from R5) CH₂OH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Me</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maniladiol</td>
<td>C</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Me</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl betulinate</td>
<td>A</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COOMe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl epithelanthate</td>
<td>D</td>
<td>OH</td>
<td>Me</td>
<td>na</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>na</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>na</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>na</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl machaerinate</td>
<td>C</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COOMe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

167
<table>
<thead>
<tr>
<th>Compound</th>
<th>Ring</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methyl oleanolate</td>
<td>C</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>COOMe</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Methyl queretaroate</td>
<td>C</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>COOMe</td>
<td>H</td>
<td>H</td>
<td>CH₂OH</td>
<td>Me</td>
</tr>
<tr>
<td>Myrtilligenic acid</td>
<td>C</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td>OH</td>
<td>CH₂OH</td>
<td>H</td>
<td>H</td>
<td>CH₂OH</td>
<td>Me</td>
</tr>
<tr>
<td>Oleanolic acid</td>
<td>C</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>CH₂OH</td>
<td>H</td>
<td>H</td>
<td>Me</td>
<td>Me</td>
</tr>
<tr>
<td>Oleanolic aldehyde</td>
<td>C</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>CHO</td>
<td>H</td>
<td>H</td>
<td>Me</td>
<td>Me</td>
</tr>
<tr>
<td>Pachanol A</td>
<td>E</td>
<td>OH</td>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td>-C(O)-O-</td>
<td>H</td>
<td>H</td>
<td>(from R5)</td>
<td>CH₂OH</td>
</tr>
<tr>
<td>Pachanol B</td>
<td>E</td>
<td>OH</td>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td>-C(O)-O-</td>
<td>OH</td>
<td>H</td>
<td>(from R5)</td>
<td>CH₂OH</td>
</tr>
<tr>
<td>Pachanol C</td>
<td>E</td>
<td>OH</td>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td>-C(O)OH</td>
<td>H</td>
<td>OAc</td>
<td>CH₂OH</td>
<td>Me</td>
</tr>
<tr>
<td>Pachanol D</td>
<td>E</td>
<td>OH</td>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td>-C(O)-O-</td>
<td>OH</td>
<td>H</td>
<td>CH₂OH</td>
<td>Me</td>
</tr>
<tr>
<td>Peniocerol</td>
<td>B</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>Me</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Queretaroic acid</td>
<td>C</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CO₂H</td>
<td>H</td>
<td>H</td>
<td>CH₂OH</td>
<td>Me</td>
</tr>
<tr>
<td>Queretarol</td>
<td>C</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂OH</td>
<td>H</td>
<td>H</td>
<td>CH₂OH</td>
<td>Me</td>
</tr>
<tr>
<td>Stellatogenin</td>
<td>A</td>
<td>OH</td>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td>-C(O)-O-</td>
<td>H</td>
<td>(from R5)</td>
<td>Me</td>
<td>OH</td>
</tr>
<tr>
<td>Stenocereol</td>
<td>B</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>Me</td>
<td>Me</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Stenocereol</td>
<td>B</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td>Me</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Stenocereol</td>
<td>B</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>Me</td>
<td>Me</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Stigmasterol</td>
<td>B</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Me</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Taraxerol</td>
<td>C</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>Me</td>
<td>Me</td>
</tr>
</tbody>
</table>

Structural tables: Triterpenes & sterols
<table>
<thead>
<tr>
<th>Compound</th>
<th>Ring</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thurberin A</td>
<td>A</td>
<td>OH</td>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>=CH₂H</td>
</tr>
<tr>
<td>Thurberogenin A</td>
<td>A</td>
<td>OH</td>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td>-C(O)-O- (to R7)</td>
<td>H</td>
<td>(from R5) =CH₂H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>acc to HEGNAUER</td>
<td></td>
</tr>
<tr>
<td>Thurberogenin A</td>
<td>A</td>
<td>OH</td>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td>-C(O)-O- (to R6)</td>
<td>H</td>
<td>(from R5) =CH₂H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>acc to KIRCHER</td>
<td></td>
</tr>
<tr>
<td>Thurberol B</td>
<td>B</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>Me</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8=C9 C14=C15</td>
<td></td>
</tr>
<tr>
<td>Treleasegenic acid</td>
<td>C</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CO₂H</td>
<td>H</td>
</tr>
</tbody>
</table>

Triterpenoids Key:

Abbreviations:

- #: Indicates position of a double bond
- COOMe: Methyl ester
- -O-: Epoxy
- A, B, C, or D: Ring structure (see diagrams)
- Et: Ethyl: C₂H₅
- OH: Hydroxy
- C#: Indicates specific carbon atom to
- H: Hydrogen
- “to R#”: Indicates the place it is bonded to
- CHO: formyl
- Me: Methyl
- “from R#”: Indicates where it is linked
- CO₂H: Carbonyl
- na: Not applicable
Some other nonalkaloidal molecules
What is Cactus Slime?

Mucilage

A

<table>
<thead>
<tr>
<th>Arabinose</th>
<th>Galactose</th>
<th>Galacturonic acid</th>
<th>Rhamnose</th>
<th>Xylose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

Repeats ~ 500 times per mucilage molecule

Composition of Mucilage

A Mucilage subunits
B Tentative proposal for repeating units in Opuntia ficus-indica mucilage.

The 20 side chains (R) contain around 15 xylose and 25 arabinose residues in total.

Adapted from McGarvie & Parolis 1981a-c

Mucilage is often used to describe an aqueous solution of gums.

Mucilages are different from gums however in that gums are usually produced in response to injury and are secreted into cavities whereas mucilage is produced inside of highly specialized cells that accumulate it between the cell wall and the cell membrane.

Mucilages are water soluble complex acidic or neutral polysaccharides of high molecular weight. Some components are related to cell wall components such as galactose, arabinose, xylose, rhamnose and galacturonic acid.

Mucilages are highly branched and fibrous. This makes them not just large but very sticky and troublesome to handle.

Most cactus mucilages have not been studied except for some of the Opuntias

In Opuntia ficus-indica the mucilage consists of alternating rhamnose and galacturonic acid residues to which are attached side chains composed of three galactose residues.

Arabinose and xylose residues branch from the galactose. It is believed that arabinose is attached to the galactose and xylose is attached to the arabinose.

Some galactose side chains have only arabinose and some others have two arabinose residues and one xylose.

Other Opuntia species were found to have different ratios of these sugar residues.

In Opuntia they were found to act as a calcium storage reservoir. As much as 20% of the plant's calcium may be associated with its mucilage.

This is due to the carboxylic acid moiety of galacturonic acid creating a strongly negative charge (causing the whole molecule to have a net negative charge)

See:

Amin et al. 1970
McGarvie & Parolis 1979
Medina-Torres 2000
Mindt et al. 1975
Techtenberg & Mayer 1981
Betalains

Betalains are water soluble pigments that are typically associated with cacti and other members of the Caryophyllae.

Betacyanins are red-violet and are the immonium conjugates of betalamic acid with cyclodopa. They are often glycosides.

Betaxanthins are yellow and are the non-glycosidic immonium conjugates of betalamic acid with any of the various known amino acids or other amines.

These are the pigments in cactus fruit & flowers rather than anthocyanins.

Biominerals

Remnants of a couple of dead eagle’s claw cactus (see illustrated version for image), AKA Echinocactus horizonthalontias, in Hudspeth County, Texas visibly show abundant biominerals deposited in the form of hydrated calcium oxalate. This material is the most important way that cacti sequester atmospheric carbon dioxide. Stored in the form of the oxalate they slowly decompose into calcium carbonate.

The cortex of older regions within the stem was found to contain up to 50% of its dry weight as the oxalate (in the form of druses of Weddellite) River & Smith 1979

A similar picture is true for Echinocereus stramineus (see the carcass below, also in Hudspeth County.)

There are many species of minerals which can form and some of them have taxonomic value. There also can be dynamic biotransformations during both the life and decay of the plant.

Two trends may interest readers:

Trichocereus species produce druses of Weddellite (Calcium oxalate dihydrate CaC₂O₄·(2+x)H₂O [with x ≤ 0.5]). These look like small white drusy crystalline spheroids (this is the white ‘sand’ in the bottom of San Pedro tea). It can be ‘readily’ biotransformed into Whewellite.

Opuntia species mainly produce Whewellite (Calcium oxalate monohydrate CaC₂O₄·H₂O) Commonly forms acutely pointed radiating druses. These look like jagged 3-D stars.

The reported occurrences of biominerals are scattered through the text. The references cited will take interested readers into this fascinating world.

Spines

The glochids of at least two species were said to be composed of pure crystalline cellulose.

Meyer & McLaughlin 1982 cited Pritchard & Hall 1976. Spines consist of an "intimate composite " of a compact arrangement of slender cellulosic microfibris (0.4mm x 6–10μm) embedded in a matrix of arabinan.

Vignon et al. 2004

Spines were described as a nanofiber composite that consists of roughly 50% cellulose and 50% arabinan.

The strength values of Opuntia ficus-indica under three point bending stress was greater than several composite materials (more than double carbon fiber reinforced polycarbonate (13 GPa) but less than half an individual E-glass fiber (72 GPa))

Also measured % of crystallinity and found there was no correlation between percent crystallinity of the spines and flexural stress.

Pilosocereus pachycladus had the strongest spines of the species they examined.

Cooper et al 2013

<table>
<thead>
<tr>
<th>Species</th>
<th>% Crystallinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echinocactus platyacanthus</td>
<td>53.4</td>
</tr>
<tr>
<td>Echinocactus grusonii</td>
<td>54.7</td>
</tr>
<tr>
<td>Echinopsis terscheckii</td>
<td>75.9</td>
</tr>
<tr>
<td>Myrtilocactus geometrizans</td>
<td>48.0</td>
</tr>
<tr>
<td>Pilosocereus languardus</td>
<td>72.9</td>
</tr>
<tr>
<td>Pachycereus pringlei</td>
<td>65.6</td>
</tr>
<tr>
<td>Pilosocereus ulei</td>
<td>75.8</td>
</tr>
<tr>
<td>Pilosocereus pachycladus</td>
<td>75.9</td>
</tr>
<tr>
<td>Stenocactus crisatus</td>
<td>64.7</td>
</tr>
<tr>
<td>Stenocactus multicosatus</td>
<td>51.4</td>
</tr>
<tr>
<td>Stenocactus vaupelianus</td>
<td>57.6</td>
</tr>
<tr>
<td>Stenocereus thurberi</td>
<td>76.3</td>
</tr>
</tbody>
</table>

Cooper et al. 2013

DiRasi et al., [1954 JACS 76: 4089-4091], reported the successful use of a blow torch to deal with spines that caused handling difficulties even with heavy gloves. The qualitative and quantitative analytical results from cacti they despined this way showed no difference from controls. Obviously some care is needed to avoid cooking the flesh.

Wire clippers, needlenose pliers & safety glasses also work.
PDFs & books:

Watch for the return of *Sacred Cacti* in its 4th edition!
http://www.troutsnotes.com

Thanks to EROWID
The ayahuasca book is online with copyright free text
http://erowid.org/library/books_online/ayahuasca_apa/

San Pedro
Book is distributed by MOKSHA http://www.entheobiblica.com/
PDF is at:
http://www.largelyaccurateinformationmedia.com/LAIM/SP.html

Some Simple Tryptamines
Hardcopy & PDF
http://www.largelyaccurateinformationmedia.com/LAIM/SST2.html

Opening comments from *Sacred Cacti*

Some Other Succulents

The Genus Desmodium

Cactus Chemistry By Species

The Cactus Alkaloids
Originally this was published in part in 1997 as
Appendix A

Websites:

Trout’s Notes
http://www.troutsnotes.com

Largely Accurate Information Media
http://www.largelyaccurateinformationmedia.com

Accurate Information Media
http://www.accurateinformationmedia.com

Highly recommended website:

Cactus Conservation Institute
http://www.cactusconservation.org/